© |halstrup walcher

Positioning systems

Automatic format adjustment in machines -
Professional conversion to various product formats

A FAMILY-OWNED AND HIGHLY INNOVATIVE SUPPLIER OF CUSTOMISED SOLUTIONS

We offer both standardised products and customised solutions and services for mechatronics, electronics and software. With our own development department (electronics/construction) and a remarkable depth of production expertise, we are able to manufacture a wide range of variants for our customers. A strong quality assurance programme and lean processes have made us a highly professional partner with impressive performance in quality, costs and punctuality. Our quality management system is certified in accordance with ISO 9001:2015. We accept our environmental responsibilities in all our processes and corporate decisions - our environmental management system is also certified in accordance with

ISO 14001:2015.

Long-standing relationships bind us closely to our customers, our approx. 130 employees, the location in Kirchzarten and our suppliers.

HALSTRUP-WALCHER: SPECIALISTS IN 4 SECTORS

You need to control the pressure in your cleanroom to keep contaminated air from entering. You need a display panel that shows you relevant physical/chemical parameters at a glance. You need to monitor an HVAC air filter or fan. Or you need to maintain overpressure or vacuum in one of your machines.
halstrup-walcher supplies instruments for high precision applications in the area of pressure measurement technology: Pressure transmitters, calibration devices and digital manometers for stationary or mobile use.

POSITIONING SYSTEMS

As a manufacturer of machine tools, your customers expect you to supply highly flexible solutions with minimal retooling times. Format changes should be performed automatically, with highest precision and as quickly as possible. And you want to be able to offer your customer optimum availability of the machine - supported by condition monitoring for the components.

Positioning systems from halstrup-walcher include motor, gear, absolute encoder, the motor control system with a choice of 10 different bus communications on-board along with a wide variety of designs and performance characteristics.

TAILOR-MADE DRIVE SOLUTIONS

You need to make parts move, linear or rotary. Optimised for the existing construction space and with a sharp eye on the costs. With a constantly high level of precision. With or without housing. As a motor/gearbox combination. Regulated or with a control system or as a purely mechanical solution. With analog or digital communication.
halstrup-walcher offers solutions covering every aspect of spur gearboxes and actuators. We develop mechanical designs, electronics and all the relevant stages of the manufacturing process in-house.

SERVICES

You have an application in drive technology, mechatronics or sensor systems, but can't find a suitable product.
halstrup-walcher develops and designs the solution you need. Even in small batch numbers.

You need DAkkS or ISO calibration for your measuring devices so that you can be sure they are reliable.
halstrup-walcher runs 2 accredited laboratories for DAkkS calibrations from the variables pressure and flow rate.

LEAN MANAGEMENT AT HALSTRUP-WALCHER

Focus on the customer and optimised internal processes

A number of years ago, business theorists spoke of a "magic triangle" of quality (Q), costs (C) and punctuality (P). These three factors were considered magical because any measures for improvement could benefit no more than two of them at any time - and these gains could only be obtained at the expense of the third. With the help of lean management, halstrup-walcher has succeeded in breaking the spell of this magic triangle. Faults, disruptions and waste are eliminated systematically from all relevant processes. This liberates the whole team to concentrate fully on the real needs of our customers.

Shop floor management has also brought previously unimaginable successes. Employee consultations take place in each department every working day. These are forums for discussion of current issues. Measures for eliminating these issues immediately and permanently are discussed and agreed at fol-low-up meetings in the company. These take into account all the relevant information. Everyone contributes, no problem is ignored. Solutions to the problems are implemented without delay. It is a culture that has won the hearts and minds of both our staff and our customers. halstrup-walcher has now begun exporting its insights into lean management and offers these as a service to medium-sized enterprises.

CUSTOMER'S BENEFIT

CONTENTS

Overview of positioning systems	p. 5	
Changing format with positioning systems	p. 6	
IP protection classes and bus communication	p. 7	
Direct / indirect wiring	p. 8	
Find the right positioning system	p. 10	
The right brake	p. 11	
PSE/PSS/PSW 3 series device and software features	p. 13	PSE
Positioning systems 2 series	p. 37	
HIPERDRIVE positioning systems	p. 39	
Analogue positioning systems	p. 44	

CONFIGUREYOUR POSITIONING SYSTEMS

Just click to go to the appropriate positioning

system. Find your optimal device with our product configurator. You can then:

- view technical details
- compare products or
- make a direct request for an offer or advice.

www.halstrup-walcher.de/configurator

or

- Navigation point: „Products"
- Product configurator
- Positioning systems

Positions
COMPARE OUR POSITIONING SYSTEMS

	PSE 3 series	PSS 3 series	PSW 3 series	PSE 34_-14	PSE 2 series	HIPERDRIVE HDA 70	PSE 441	PSE 100/200	PSE 272
Model page	$\begin{gathered} 30-8>\mathbf{2 0} \\ 30 _/ 32--14>21 \\ 31--8>\mathbf{2 2} \\ 31 / 33-14>23 \\ 3210 / 3218-14>24 \\ 3310 / 3325-14>25 \end{gathered}$		$\begin{gathered} 30-8>32 \\ 30-/ \overline{2}-14>33 \\ 31--8>34 \\ 31 _/ 33 _-14 \bullet 35 \end{gathered}$	26	37	40	42	44	45
Protection class	IP54	(P65 ${ }^{11}$	(P68 ${ }^{21}$	IP54	IP 54	IP65	IP65	IP55	IP65
Bus communication ${ }^{31}$	CA, DP,	N, MB, SE, EC, PN,	L, IO	$\begin{aligned} & \text { CA, DP, SE, EC, } \\ & \text { PN, EI, PL, IO } \end{aligned}$	CA, DN, MB	DP, EC, PN, EI/ RS 485 via Hub	RS 485 via Hub/daisy chain	$\begin{array}{r} \text { analog s } \\ 0 . .10 \mathrm{~V} \\ 0 / 4 \ldots 20 \mathrm{~mA} \\ \text { supply volta } \end{array}$	$\begin{aligned} & \begin{array}{l} \text { value: } \\ >2 \mathrm{k} \Omega) \\ \left.\mathrm{R}_{\mathrm{L}}<500 \Omega\right) \\ \mathrm{e}: \\ \hline \end{array} 230 \mathrm{VAC} \end{aligned}$
Motor		EC-motor		EC-motor	DC-motor	EC-motor	stepping motor	AC-ID	motor
Nominal torque		5 Nm (.. 25 Nm for P		$10 / 18 \mathrm{Nm}$	$1 / 2 \mathrm{Nm}$	15 Nm	$1.5 / 2.5 \mathrm{Nm}$	1.. 10 Nm	$0.75 . .5 \mathrm{Nm}$
Self-holding torque	0.5..	. 5 Nm (..12,5 Nm fo	E) ${ }^{4}$	5.. $9 \mathrm{Nm}^{4 /}$	-	25 Nm	-	-	-
Nominal speed	$10 . .230 \mathrm{rpm}$	$40 . .210 \mathrm{rpm}$	35.. 180 rpm	60/80 rpm	$20 . .80 \mathrm{rpm}$	27 rpm	$10 . .40 \mathrm{rpm}$	$0.25 . .30 \mathrm{rpm}$	$2 . .60 \mathrm{rpm}$
Output shaft	8 mm hollow sha 8/14 mm	(only for 30_, 31_), solid shaft (only for	mm hollow shaft, /PSW)	14 mm hollow shaft with clamp and feather keyway	8 mm solid/ hollow shaft with adjustable collar	10 mm solid shaft, $10 / 12 \mathrm{~mm}$ hollow shaft	10 mm solid shaft with feather keyway	$\begin{gathered} 12 \mathrm{~mm} \\ \text { solid shaft } \end{gathered}$	$\begin{gathered} 8 \mathrm{~mm} \\ \text { solid shaft } \end{gathered}$
Measurement system ${ }^{5)}$		absolute, optical-magnetic		absolute, optical-magnetic	quasi absolute, magnetic	quasi absolute, mag-netic-mechanical	absolute, magnetic	absolute	absolute
Positioning range		250 rotations ${ }^{61}$		$\begin{aligned} & 250 \\ & \text { rotations }^{6)} \end{aligned}$	unlimited (quasi absolute measurement system) 64 rotations (absolute measurement system)	32000 rotations	$\begin{aligned} & 250 \\ & \text { rotations }{ }^{61} \end{aligned}$	50 rotations (PSE 200) 20 rotations (PSE 100)	15 rotations
Jog keys		onal via jog key cont		optional via jog key contacts ${ }^{81}$	-	on board	on board	-	-
Accuracy		$\pm 0.9^{\circ}$		$\pm 0.9^{\circ}$	$\pm 0.9^{\circ}$	$\pm 1^{\circ}$	$\pm 2.5^{\circ}$	2% of positioning range	2% of positioning range
Manual adjustment	standard, on	y possible with 14 m	output shaft	standard	-	-	-	-	-
Brake ${ }^{\text {9) }}$	optional (ho	ding brake) for 14 mm	utput shaft	optional (friction brake)	-	not required due to self-holding torque	-	-	-
${ }^{1)}$ under installed and wired conditions ${ }^{2}$) IP 68 at standstill, IP66 during rotation (tested with water) ${ }^{31}$ see p. 7 for bus abbreviations ${ }^{4}$) with current ${ }^{5}$ generally without battery, therefore maintenance-free ${ }^{61}$ without mechanical limitation ${ }^{71}$ not for PSW or IO-Link, always via an extra connector ${ }^{81}$ not for CANopen ${ }^{9}$ please see brake selection guide on p .11							HIPERDRIVE Hub with DP, EC, PN, El - 41		

ADJUST FORMATS WITH POSITIONING SYSTEMS

Your customers want increasing flexibility in machines.

Machines and plants require minimal set-up times. Conversion is therefore automated more often as well. More and more bottlers are, for instance, demanding high flexibility when it comes to changing bottle formats: after small round ones, a quick changeover must be made to tall square bottles.

When a machine is converted, many objects are positioned on adjustment axes in the entire process: guide rails, labellers and inspection cameras. Our positioning systems adjust these axes to the new position in the control unit immediately after the demand - quickly and precisely.

packaging machines

filling plants

machine tools/woodworking

Take advantage of the 3 benefits of automation

Compared to manual adjustment, automation with our positioning systems offers 3 key benefits:
(1) Saves time: It is already possible for production to start in the new format just after the demand several axles are adjusted at the same time and there is no need to wait for staff
(2) Increased quality: A defined format is always adjusted the same way the positions vary with manual adjustment

Self-monitoring: When there are unwanted changes to the position, the position correction immediately resets the desired position. Thanks to their self-analysis and early warnings, our positioning systems provide support for predictive maintenance - to improve your machine's availability (see also page 17).

[^0]
FLEXIBLE PROTECTION CLASSES AND BUS COMMUNICATION

Flexibility in IP protection classes

For dry，damp or wet areas：
we have the right solution for you．
The protection required by a component against penet－ ration by moisture and dust／objects is stated using the IP protection class（IP＝International Protection Code）．

Many machines are used under normal manufactu－ ring conditions and therefore require no additional moisture protection for the positioning system．Good resistance to dust and robust safety standards are far more important．

For applications such as these，standard devices with the protection class IP54 are an ideal solution．

Hygienic applications in the food processing and pharmaceutical sectors as well as other critical applications require a higher protection class．This is achieved by using more resistant materials（e．g． stainless steel）as well as suitably designed seals． These measures are relevant to the overall cost of the solutions，so halstrup－walcher offers devices in both the IP 65 and IP 68 segments．

PSE／PSS／PSW 3 series	PSE 3 series （ $\mathrm{E}=$＝Efficient）	p．20－26	PSS 3 series （ $\mathrm{S}=$ Stainless）	p．28－31	PSW 3 series （ $\mathrm{W}=$＝Washable）	p．32－35
HIPERDRIVE	－	－	HDA 70，Hub， PSE 441	p．40－42	－	－
Further products	$\begin{gathered} \text { PSE 21_/23_-8 } \\ \text { PSE 100/200 (IP55) } \end{gathered}$	$\begin{aligned} & \text { p. } 37 \\ & \text { p. } 44 \end{aligned}$	PSE 272	p． 45	－	－

We speak your language：the appropriate bus system for your machine

Machinery and plant builders frequently have to demonstrate a high level of flexibility in the range of bus communication standards they offer－and meet the wishes of the machine＇s user．halstrup－walcher supplies the best possible support for meeting these requirements：all standard bus systems are developed and manu－ factured in－house and supported by our application engineers．

				04 00 00 0 0						Ether: et/IP		
Abbreviation		CA	DP	DN	MB	10	SE	EC	PN	El	PL	
Positioning system	page											
PSE 21＿／23＿	37	\checkmark		\checkmark	\checkmark							
PSE／PSS／PSW 30＿／31＿／32＿／33＿	20－35	\checkmark										
PSE 34＿	26	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
HIPERDRIVE HDA 70	40		\checkmark					\checkmark	\checkmark	\checkmark		\checkmark
PSE 441	42											\checkmark
HIPERDRIVE Hub	41		\checkmark					\checkmark	\checkmark	\checkmark		

FLEXIBILITY WITH WIRING

Your choice: Direct or indirect wiring via hub/gateway

You include positioning systems at various places in a machine. Wire the devices in the way that best suits your machine. You can connect our positioning systems in two ways:

1. Direct bus connection to the control unit: Line or ring wiring of all positioning drives
2. Indirect connection with interposition of a hub or gateway (= distributor) via a cable

DIRECT WIRING -

 SAVE SPACE AND DISTRIBUTORS
PSx 3 series

With direct wiring, bus communication occurs directly from the control unit to the positioning system, without an additional bus distributor. The signal is looped through a second bus connection to the next device. You thus connect the drives as series (CANopen, PROFIBUS DP, DeviceNet and Modbus) or ring (for all Ether-net-based buses). If a component fails, further signals are provided to the control unit with a ring connection.

Another cable gives the systems their power supply. The motor and control unit are powered separately in the device. Galvanic separation makes constant access to bus signals possible - even if the motor power supply is interrupted, for instance by an emergency shut-down.

Advantages compared to indirect wiring:

- Save on installation space and take advantage of the positioning systems' compact design
- Save costs for additional bus distributors

HIPERDRIVE Family

The HIPERDRIVE product family also provides an option for direct wiring with the HDA 70 . We install an adapter for bus communication in the device for that.

INDIRECT WIRING -
 SAVE TIME AND CABLES

Indirect wiring of positioning system 3 series

Positioning systems in the 3 series connect you to the control unit via a standard hub. Power can be supplied to the devices in 2 ways:

1 standard Y-coded cable is connected to the device for bus communication and power supply (Ethernet-based buses, other buses on request). The cable must be spliced.
(2) A D-coded cable is connected to a hub for bus communication (Ethernet-based buses without Sercos). Power is supplied to the positioning systems with an A-coded cable.

For IO-Link, a standard A-coded cable is used for bus communication and power supply.

Indirect wiring of HIPERDRIVE family

The HDA 70 and PSE 441 are connected to the control unit via the HIPERDRIVE hub. The hub controls up to 8 drives and has power fuses. The control cabinet is thus relieved.

The hub converts the bus commands into standard signals. If bus communication is changed, the HIPERDRIVE positioning systems can remain unchanged. Only the hub has to be changed. Time-consuming alterations and stock keeping are thus minimised.

FIND THE RIGHT POSITIONING SYSTEM

You already know your torque/speed range and are looking for the appropriate model.

For example you require the protection class IP54 and a maximum torque of 2 Nm . The speed should be greater than 100 rpm .
\rightarrow PSE 3

This graphic always shows the nominal torquenominal rated speed combinations for the halstrup-walcher positioning systems. It is intended to provide an initial guide and enable you to find the correct positioning systems based on the required torque range.

CALCULATE THE TORQUE

(relevant for vertical positioning)

You know the mass to be positioned and are looking for the

 appropriate torque when making a vertical adjustment?The following "back-of-an-envelope" calculation allows you to calculate the approx. torque required. But it does not consider the torque requirement with friction. Another option (for machines that are already operational) is to measure the actual value using a torque measurement device.

$$
\begin{aligned}
T & =1.1 \text { for ball screw spindle } \\
& =3.3 \text { for trapezoidal threaded spindle }
\end{aligned}
$$

Example: mass m: 50 kg , spindle pitch s: 4 mm , T: trapezoidal threaded spindle

$$
\text { torque } \mathrm{M}[\mathrm{Nm}]=\frac{50 \mathrm{~kg} \times 4 \mathrm{~mm}}{630} \times 3.3 \mathrm{Nm}=1.04 \mathrm{Nm}
$$

\rightarrow A positioning system with 2 Nm torque should be selected. (30\% reserve)

THE RIGHT BRAKE FOR VERTICAL APPLICATIONS

Selection of the appropriate brake (relevant for vertical positioning)

When objects have to be positioned vertically (i.e. moved up and down), it should not be forgotten that gravity continues to act when they are at rest. There are various requirements here: The position must be maintained at least approximately for safety reasons. Some applications also require the position to always be maintained precisely even when the power supply is switched off. The various possibilities are given below.

Please note the following situations and solutions:

	Requirement	Solution	Technical description
1.	Object needs not to be held in position when power supply is switched off.	- PSE/PSS/PSW without optional brake, with ball screw	- Self-holding torque acts when power supply is active - When the power supply is switched off, the object is not held in position (no braking effect)
2.	Object must be held in approximate position when the power supply is switched off."	- PSE/PSS/PSW 3_-14 with optional hand brake (holding brake) or - PSE 34_-14 with integrated retarder (friction brake)	- Mechanically held in approximate ${ }^{11}$ position
3.	Object must be held exactly in position even when the power supply is switched off.	- HIPERDRIVE HDA 70 due to very high self-holding torque - PSE/PSS/PSW without optional brake, but with trapezoidal threaded spindle instead of ball screw spindle - PSE/PSS/PSW with external, e.g. pneumatic brake	- Mechanically held in the exact position

W |halstrup walcher

POSITIONING SYSTEMS 3 SERIES

PSE

PSS

PSW

PSE/PSS/PSW

THE COMPACT AND FUTURE-PROOF SYSTEM SOLUTION

Your machine needs minimal set-up times with high repeating accuracy and optimum availability. Do you want to be flexible with bus communication and IP protection? Have you also got space you can't afford to lose?

halstrup-walcher has been supplying positioning systems to well-known machinery and equipment manufacturers for over 10 years. The experience we have gathered has been integrated into two new series - PSS (IP65) and PSW (IP68) - which complement our successful PSE (IP 54) range. All three series are interchangeable in terms of their connection dimensions and they are available with a wide range of different bus systems.

The 3 series positioning system combines precise positioning with unrivalled compactness.

All the functions are integrated into a very small space (as shown in these 3D illustrations). The systems manage without additional bus distributors, saving you space and money.

Important information for you as a partner: Not only are the electronics and mechanical systems developed in-house, they are also manufactured in-house - from the gear wheels to the SMD circuit boards. Because we never compromise on quality!

$\mathbf{1}$ machine concept - in $\mathbf{3}$ IP classes and with $\mathbf{1 0}$ buses

Our comprehensive construction kit system lets you adapt both the bus communication and IP protection class to customer wishes. In the process, the relevant dimensions do not change. This generates noticeable savings for you when altering and adapting products for customer-specific machines.

We have designed a universal product family for all 3 relevant IP protection classes: IP 54 (PSE), IP 65 (PSS) and IP 68 (PSW). You can say goodbye to bulky covering boxes for higher IP protection classes. These are welcome advantages for any mechanical engineer - especially considering the restricted size of the installation spaces available.

ABSOLUTE MEASUREMENT SYSTEM

The PSE / PSS / PSW positioning system always knows its exact position:

- Absolute measurement system right on the output shaft
- No battery - no maintenance costs
- No positioning errors even if the power supply is interrupted
- No reference run - no time wasted

Measured by the halstrup-walcher combination encoder on the basis of:

1. the number of total rotations $\left(\mathrm{n} \times 360^{\circ}\right)$,

- 250 rotations are recorded (not mechanically limited)
- 8 bit encoder (optical)
- error $=0$ (pure counting function)

2. the degrees of angle of the last rotation

- 400 increments per rotation (magnetic)
- error $=$ max. 1 increment per 360°, i.e. between 0° and $\mathbf{0 . 9}{ }^{\circ}$ total error

POSITIONING ACCURACY

Because any error is only contributed by the "last rotation" (max. 0.9° of 360°), the error contribution x in the position is:

$$
\begin{aligned}
\frac{0.9^{\circ}}{360^{\circ}}= & \frac{x}{5 \mathrm{~mm}} \rightarrow x=\max .0 .0125 \mathrm{~mm} \text { (spindle pitch } 5 \mathrm{~mm} \text {) } \\
& \frac{x}{4 \mathrm{~mm}} \rightarrow x=\max .0 .0100 \mathrm{~mm} \text { (spindle pitch } 4 \mathrm{~mm} \text {) }
\end{aligned}
$$

In practice, there is also an error contribution associated with inconsistencies in the spindle.
The encoder is located on the output shaft, which prevents additional errors due to gear backlash.
\rightarrow Optimum precision for all positioning applications
 mm

STAY SAFE EVEN WHEN PROBLEMS OCCUR

The motor and control units have separate power supplies and are galvanically separated. This prevents problems due to interferences being passed on from the motor to the control unit. It also guarantees that bus communication remains available even during an emergency stop; it is still possible to read out the status and current actual position.

EC-MOTOR

Durable in every detail. Our positioning drives should be robust and durable. This is why we always use high quality brushless EC-motors, which do not wear and which drive the positioning system accurately.

STATUS LED

Recognise the current status.

Status LEDs always show the positioning system's current status. Errors are signalled without looking into the control unit.

EASY MOUNTING WITH HOLLOW SHAFT

Mechanical adaptations with minimal effort. The output shaft of the positioning system has to be adapted to the application. A hollow shaft with an adjustable collar has proven itself an effective and reliable solution for this task. Torque support is also very easily implemented using a pin. This eliminates the need for a coupling with intermediate flange, which would result in additional costs, longer assembly times and, above all, requires more space.

Mounting with hollow shaft

Mounting with solid shaft and coupling

FAST SET-UP

To set up the system or a replacement, simply install the unit and assign the address using the address selection switches - the positioning system immediately receives all the parameters from the predecessor unit via the control.The absolute encoder removes the need for a reference run.

min. position max. position

ADDRESS SWITCHES ${ }^{11}$

Addressing - right on the device

Usually, customers wish to be able to set the address of the individual positioning system directly on the device itself.
This avoids the confusion and mistakes that can occur when addresses are set via the control unit. It also simplifies the process of setting the address manually when a device is replaced during servicing or maintenance work.

integrated address switches
${ }^{1)}$ not for IO-Link - here the address is set using the slot on the master

MANUAL ADJUSTMENT ${ }^{44}$

Manual gearbox adjustment.

Sometimes it is necessary for the user to be able to turn the spindle connected to the positioning system manually. Here, the manual disconnecting lever is used to disconnect the brake and a pinion is then coupled to it for manual adjustment. The gearbox can then be adjusted using a key/wrench.

${ }^{4)}$ standard for 14 mm shafts, not for 8 mm shafts

LIMITING TORQUE

The PSx 3 series is capable of regulating the torque so that it does not exceed the threshold value specified in the customer parameters:

- effective overload prevention (gearbox, application,...)
- temporary peak torque levels are deliberately permitted (to avoid unnecessary run aborts)
The motor stops if the load is too high according to specific conditions!

STRONG BREAKAWAY TORQUE

Safe startup even after extended standstills.
Machines are not necessarily in continuous use. Sometimes there can be extended periods of inactivity that impair the normal ease of running. When it is time for the machine to start up again, it requires a higher "breakaway torque."
The PSx series of positioning systems offers this capability, which is significantly higher than the nominal torque!

THE DIFFERENCE BETWEEN OBSTACLES AND DIRT

Intelligent running behaviour.

In practice, it is always possible that the rotation of the spindle can be obstructed in some way. In the most extreme case, this can be "running into an obstruction", e.g. if the object to be positioned has reached its mechanical limit position. However, dirt or dust on the spindle can cause it to run less easily.

In practical applications, it is important to be able to differentiate between these two scenarios: When the system detects a genuine obstruction it should stop immediately. If the problem is dirt, it should目 accelerate in order to overcome the blockage effectively. The PSx series of positioning systems can differentiate between these two scenarios within milliseconds and react accordingly.

SPINDLE OFFSET RUN

Excluding inconsistencies due to lash in the spindle.

Due to dirt or slight inaccuracies, every spindle has a certain element of lash which becomes noticeable during changes in direction. For this reason, the positioning system can be parameterised to ensure that the target position is always approached from the same side (in the diagram: from the left). This eliminates the effect of spindle lash on positioning accuracy. Naturally, the process is monitored to prevent running into an obstruction.

WELL SYNCHRONISED

Parallel movement of an object by two positioning systems.

If two positioning systems are required to move a broad or heavy object, they must be perfectly synchronised to avoid tipping.
The PSx series of positioning systems has been performing this task reliably in many applications for years. It is achieved through the use of a very fast drag error control unit. Find out more on the next page.

The availability of the machine is critical and this is supported by condition monitoring.

The machine's central control unit detects problems before they occur and enables technicians to take prompt action. Numerous diagnostic messages are therefore generated in the 3 series positioning systems for predictive maintenance of machinery. A selection of these are presented on this page.

TEMPERATURE MONITORING

The temperature is also monitored to protect the drive and components. If this is exceeded or fallen short of, the motor is shut down.

SUPPLY VOLTAGE

Continuous monitoring of the voltage level.

If situations involving excessive or insufficient voltage occur regularly, the causes should be thoroughly investigated. The PSx series of positioning systems are programmed to ignore very short "spikes" but report all overvoltage or undervoltage events that exceed a specified duration. This enables the operator to detect errors in the supply chain before they cause damage or standstills.

voltage

NO DRAG ERRORS

Optimum adjustment of the actual position in

accordance with the specified target position is one of the key quality features of the positioning systems in the PSx 3 series. If the control unit detects that one positioning system is falling behind, it accelerates it in order to minimise "drag errors". This ensures that the two systems are well synchronised, as shown on p. 16. The drag error monitor is also used to provide early warnings. Dirt can make it impossible to reach the target position within a specified time. This situation is also passed on to the control unit directly as a "condition monitoring" message.
distance

CONTINUOUS MONITORING OF POWER CONSUMPTION AND TORQUE

Monitoring these important values can prevent the positioning system being overloaded. It also allows the application to be protected in specific ways, e.g. against the effects of excessive torque. In principle, any deviation from the normal progress stored in the control unit can provide an indication of a malfunction - this makes it possible actively to avoid problem situations and damage to equipment. Wear and tear of the spindle is also detected.

ORDER KEY PSE/PSS/PSW 3 SERIES

All the positioning systems in the PSE/PSS / PSW 3 series share the same order key.
To provide the best possible overview and to simplify customer documentation, the diverse range of options available for the PSE/PSS/PSW 3 series has been organised in a shared order key.

Order key

A		B	C		D		E	F		
	-		-		-		-		-	

PSE/PSS/PSW:

	Protection class	A Design	B Type	C Bus (see	communication p. 7)	D Connections	E Brake (see p. 11)	F Certification
Positioning System Efficient (see p. 20-25) ${ }^{11}$ Positioning System Stainless (see p. 28-31) Positioning System Washable (see p.32-35)	$\begin{aligned} & \text { IP } 54 \\ & \text { IP } 65 \\ & \text { IP } 68 \end{aligned}$	PSE PSS PSW	$\begin{gathered} 30 x-8 /-14(V)^{2)} \\ 31 \mathbf{x}-8 /-14(\mathrm{~V})^{2)} \\ 32 \mathbf{x}-14(\mathrm{~V})^{2} \\ 33 \mathbf{x}-14(\mathrm{~V})^{2)} \end{gathered}$	CA: DP: DN: MB: SE: EC: PN: EI: PL: IO:	CANopen PROFIBUS DP DeviceNet Modbus RTU Sercos EtherCAT PROFINET EtherNet/IP POWERLINK IO-Link	0 : without jog keys T: with jog keys ${ }^{3)}$ Y: 1 connector, Y-encoded Z: 1 connector, Y-encoded, with jog keys ${ }^{31}$	0 : without M^{4} : with	0: C N: NRTL certification (in accordance with UL, CSA, ANSI and CE)
${ }^{11}$ You can find the order key for the PSE 34_-14 on page 26.			${ }^{21}(\mathrm{~V}) \text { not for PSE }$			3)not for PSW or IO- 4) only with Link, always via an 14 mm out- extra connector put shafts ll (
Standard equipment (Connections)			Form/Type Torqu			Output shaft		Examples of orders provided below.
- second databus connection always provided (not for IO-Link or Y-encoded connector) - address switches always provided (also IE-buses, not for IO-Link)			horizontal vertical horizontal vertical	$\begin{aligned} & 3 \\ & \rightarrow \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathbf{x}=1 \mathrm{Nm} \\ & \mathbf{x}=2 \mathrm{Nm} \\ & \mathbf{x}=5 \mathrm{Nm} \\ & \mathbf{x}=10 \mathrm{Nm}^{5)} \\ & \mathbf{x}=18 \mathrm{Nm}^{5)} \\ & \mathbf{x}=25 \mathrm{Nm}^{5)} \end{aligned}$	$\begin{aligned} & 8=8 \mathrm{~mm} \text { holl } \\ & 14=14 \mathrm{~mm} \\ & 8 \mathrm{~V}=8 \mathrm{~mm} \text { so } \\ & 14 \mathrm{~V}=14 \mathrm{~mm} \end{aligned}$	w shaft low shaft d shaft ${ }^{6{ }^{6}}$ olid shaft ${ }^{6)}$	
For further information on connections and address settings see also "Overview: bus communication" on p. 47 .					${ }^{51}$ only for PSE 18 Nm : horiz. 25 Nm : long.	${ }^{6}$ only for PSS/PSW		

Nominal torque - nominal speed combinations

TORQUES AND SPEEDS

Example 1

You require the protection class IP54 and a maximum torque of 2 Nm . The speed should be greater than 100 rpm. An 8 mm hollow shaft and longitudinal construction meet the requirements of your application.
Your wish to use EtherNet/IP as the bus and connect the PSE to the control unit using a hybrid connector and hub. You do not require an additional holding brake in your application.
\rightarrow PSE 312-8-EI-Y-0-0

Example 2

IP 68, max. 3 Nm, > 100 rpm, horizontal construction, 14 mm solid circular shaft, IO-Link via a connector, with brake.
\rightarrow PSW 325-14V-IO-0-M-0

ACCESSORIES PSE/PSS/PSW 3 SERIES

The connectors shown here can be used for all three types of device (PSE/PSS/PSW). This ensures that the PSE (IP54) and PSS (IP65) comply with the IP protection classes. We will also be pleased to help you find a suitable mating connector for the PSW (IP68) if necessary - just ask us!

Bus communication	Power supply + databus connector (2 x) (for option 0) ${ }^{11}$	Power supply + databus $(2 x)$ + jog key connector ${ }^{2)}$ (for option T) ${ }^{1)}$	Cable and connectors for 1 -connector solution ${ }^{3)}$ (for option Y or IO) ${ }^{1)}$
CANopen	2 ${ }^{\text {c }}$	3 c	
PROFIBUS DP			
Modbus RTU	Connector set: Order no. 9601.0060	Connector set: Order no. 9601.0062	5 m : Order no. 9601.0245 10 m: Order no. 9601.0233 20 m: Order no. 9601.0234
DeviceNet			
	Connector set: Order no. 9601.0088	Connector set: Order no. 9601.0090	
Sercos			5 m : Order no. 9601.0240 10 m : Order no. 9601.0244
EtherCAT		,	
PROFINET			Hub on request
EtherNet/IP			
POWERLINK	Connector set: Order no. 9601.0112	Jog key box: Order no. 9601.0241	
IO-Link ${ }^{3}$	-	-	
			Connector: Order no. $9601.0107^{\text {3) }}$

${ }^{1)}$ see under "D" in the order key ${ }^{2)}$ not for PSW ${ }^{3 /}$ power supply and bus via one cable, without second databus connector

PSS/PSW:
OPTIMUM HYGIENIC DESIGN

Our stainless steel positioning systems follows the hygienic design recommendations (construction design, selection and treatment of materials) of the Chair of Apparatus and Plant Design at the Technical University of Munich, Weihenstephan Science Centre.

Screw cap to cover the second bus connection (for PSS/PSW)
Order no. 9601.0176

MODULES AND DESCRIPTION FILES

Take advantage of our functional modules or description files for the various buses. You can download the files on our website:
www.halstrup-walcher.de/en/software

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSE 301-8	1 Nm	0.5 Nm	210 rpm
PSE 302-8	2 Nm	1 Nm	115 rpm
PSE 305-8	5 Nm	2.5 Nm	40 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos, EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	30% (basis time 300 s)
Mode of operation	S3
Supply voltage	$24 V D C \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} \mathrm{5g}$
Output shaft	8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP 54
Weight	650 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

The order key and accessories can be found on p. 18/19.

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	30% (basis time 300 s)
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	PSE 30_: 2.4 A, PSE 32_: 3.1 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} \mathrm{5g}$
Output shaft	14 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP54
Weight	1200 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

The order key and accessories can be found on p. 18/19.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSE 311-8	1 Nm	0.5 Nm	210 rpm
PSE 312-8	2 Nm	1 Nm	115 rpm
PSE 315-8	5 Nm	2.5 Nm	40 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos, EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	30% (basis time 300s)
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} 10 \mathrm{~g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP54
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

The order key and accessories can be found on p. 18/19.

Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP 54
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

The order key and accessories can be found on p. 18/ 19.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSE 3210-14	10 Nm	5 Nm	30 rpm
PSE 3218-14	18 Nm	9 Nm	17 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link
\(\left.\begin{array}{ll}\hline Start-up duration \& 30 \% (basis time 300 \mathrm{~s})

\hline Mode of operation \& \mathrm{S} 3

\hline Supply voltage \& 24 \mathrm{VDC} \pm 10 \%

galvanically separated between control

and motor and bus\end{array}\right]\)| | 3.1 A |
| :--- | :--- |
| Nominal current | 0.1 A |
| Power consumption (control unit) | 0.9° |
| Positioning accuracy
 absolute measurement of position taken
 directly at the output shaft | 250 rotations |
| Positioning range | 50 g 11 ms |
| Shock resistance
 in accordance with IEC/DIN EN $60068-2-27$ | $10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ |
| Vibration resistance
 in accordance with IEC/DIN EN $60068-2-6$ | $55 . .1000 \mathrm{~Hz} 10 \mathrm{~g} /$ |
| Output shaft limits | |
| Maximum axial force | 14 mm hollow shaft |
| Maximum radial force | with clamp and feather key |
| Ambient temperature | 20 N |
| Storage temperature | 40 N |
| Protection class | $0 . .45^{\circ} \mathrm{C}$ |
| Weight | $-10 . .70^{\circ} \mathrm{C}$ |
| Certificates | IP54 |

The order key and accessories can be found on p. 18/19. walcher

hollow shaft $\varnothing 14 \mathrm{H} 7$ / 20 depth with clamp and feather key DIN 6885-A5 $\times 5 \times 12$

For details of the connections please see also p. 47 and the instruction manual.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSE 3310-14	10 Nm	5 Nm	25 rpm
PSE 3325-14	25 Nm	$12,5 \mathrm{Nm}$	10 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link
\(\left.\begin{array}{ll}\hline Start-up duration \& 25 \% (basis time 300 \mathrm{~s})

Mode of operation \& \mathrm{S} 3

\hline Supply voltage \& 24 \mathrm{VDC} \pm 10 \%

galvanically separated between

control and motor and bus\end{array}\right]\)| | 3.1 A |
| :--- | :--- |
| Nominal current | 0.1 A |
| Power consumption (control unit) | 0.9° |
| Positioning accuracy
 absolute measurement of position taken
 directly at the output shaft | 250 rotations |
| Positioning range | 50 g 11 ms |
| Shock resistance
 in accordance with IEC/DIN EN $60068-2-27$ | $10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ |
| Vibration resistance
 in accordance with IEC/DIN EN $60068-2-6$ | $55 . .1000 \mathrm{~Hz} 10 \mathrm{~g} /$ |
| Output shaft limits | |
| Maximum axial force | 14 mm hollow shaft |
| Maximum radial force | with clamp and feather key |
| Ambient temperature | 20 N |
| Storage temperature | 40 N |
| Protection class | $0 . .45^{\circ} \mathrm{C}$ |
| Weight | $-10 . .70^{\circ} \mathrm{C}$ |
| Certificates | IP54 |

The order key and accessories can be found on p. 18/19.

E 3 halstrup
walcher

Start-up duration	20% (basis time 300 s)
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	7.8 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} \mathrm{5g}$
Output shaft	14 mm hollow shaft with clamp and feather key
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP54
Weight	1900 g
Certificates	CE

Nominal torque	Self-holding torque	Nominal rated speed
10 Nm	5 Nm	80 rpm
18 Nm	9 Nm	60 rpm

Data interfaces	B
CANopen	CA
PROFIBUS DP	DP
Sercos	SE
EtherCAT	EC
PROFINET	PN
EtherNet/IP	EI
POWERLINK	PL
IO-Link	IO

Connections 11	C
without jog keys	0
with jog keys 11	T

1) not for CANopen

Brake	D
no brake	0
with brake (holding torque is the same as the nominal torque)	M

Order code		A		B		C		D
PSE	-		-		-		-	

AUTOMATED FORMAT CHANGEOVERS SUPPORT INDUSTRY 4.0

in self-monitoring and networked machines

Flexible machine design with positioning systems

- Intelligent drives with an integrated motor, gearbox, motor control, on-board communication, absolute encoder and condition monitoring.
- Kit with various designs, torques, protection classes and bus protocols
- Machinery can be flexibly tailored to customer requirements - without changing the relevant dimensions

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSS 301-8	1 Nm	0.5 Nm	210 rpm
PSS 302-8	2 Nm	1 Nm	115 rpm
PSS 305-8	5 Nm	2.5 Nm	40 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20\% (basis time 600s) at nominal torque
Mode of operation	S3
Supply voltage	24 VDC $\pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	8 mm solid shaft or 8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP65 under installed and wired conditions ${ }^{11}$
Material	as for PSE, but with stainless steel housing
Weight	650 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{1)}$ welded V2A housing, ball bearings at the output shaft with sealing disc
The order key and accessories can be found on p. 18/19.

PSS.

PSS 30_/32_-14 (with hollow shaft)
screw
DIN912 M4x16
torque
support
can be varied by rotating the cover by 180°.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSS 301-14	1 Nm	0.5 Nm	210 rpm
PSS 302-14	2 Nm	1 Nm	100 rpm
PSS 305-14	5 Nm	2.5 Nm	40 rpm
PSS 322-14	2 Nm	1 Nm	150 rpm
PSS 325-14	5 Nm	2.5 Nm	68 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20\% (basis time 600s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	PSS 30_: 2.4 A, PSS 32_: 3.1 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	14 mm solid shaft or 14 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP65 under installed and wired conditions ${ }^{2)}$
Material	as for PSE, but with stainless steel housing
Weight	1200 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{10}$ over a rotating manual adjustment shaft SW6/8 depth hex

PSS 30_/32_-14-V (with solid shaft)

For details of the connections please see also p. 47 and the instruction manual.
PSS 30_/32_-14V (with solid shaft)
hollow shaft © 14H7/20 depth
viewing window and access to address switch and status display

Certificates
${ }^{2)}$ welded V2A housing, ball bearings at the output shaft with sealing disc

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSS 311-8	1 Nm	0.5 Nm	210 rpm
PSS 312-8	2 Nm	1 Nm	115 rpm
PSS 315-8	5 Nm	2.5 Nm	40 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	8 mm solid shaft or 8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP65 under installed and wired conditions ${ }^{11}$
Material	as for PSE, but with stainless steel housing
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{11}$ welded V2A housing, ball bearings at the output shaft with sealing disc
The order key and accessories can be found on p. 18/19.

PSS 31_-8 (with hollow shaft)

PSS 31_-8-V (with solid shaft)

PSS 31_/ 33 _-14-V (with solid shaft)

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSS 311-14	1 Nm	0.5 Nm	210 rpm
PSS 312-14	2 Nm	1 Nm	115 rpm
PSS 332-14	2 Nm	1 Nm	150 rpm
PSS 335-14	5 Nm	2.5 Nm	68 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600 s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	PSS 31_: 2.4 A, PSS 33_: 3.1 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$0 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	14 mm solid shaft or 14 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP65 under installed and wired conditions ${ }^{11}$
Material	as for PSE, but with stainless steel housing
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{11}$ welded V2A housing, ball bearings at the output shaft with sealing disc
The order key and accessories can be found on p. 18 / 19.

C3 halstrup
walcher

PSW 30_-8

IP 68

PSW.
by halstrupwaichet

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSW 301-8	1 Nm	0.5 Nm	180 rpm
PSW 302-8	2 Nm	1 Nm	100 rpm
PSW 305-8	5 Nm	2.5 Nm	35 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos, EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	8 mm solid shaft or 8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP68 at standstill ${ }^{11}$, IP 66 during rotation (tested with water) ${ }^{1)}$
Material	stainless steel
Weight	650 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{1)}$ welded V2A housing, output shaft sealed with quad-ring
The order key and accessories can be found on p. 18/19.

PSW 30_-8 (with hollow shaft)

PSW 30_-8-V (with solid shaft)
$\varnothing 4.5(4 \mathrm{x})$

For details of the connections please see also p. 47 and the instruction manual.

PSW 30_/32_-14-V (with solid shaft)

For details of the connections please see also p. 47 and the instruction manual.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSW 301-14	1 Nm	0.5 Nm	180 rpm
PSW 302-14	2 Nm	1 Nm	90 rpm
PSW 305-14	5 Nm	2.5 Nm	35 rpm
PSW 322-14	2 Nm	1 Nm	125 rpm
PSW 325-14	5 Nm	2.5 Nm	50 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600s) at nominal torque
Mode of operation	S3
Supply voltage	$24 V D C \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	PSW 30_: 2.4 A, PSW 32_: 3.1 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	14 mm solid shaft or 14 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP68 at standstill ${ }^{22}$, IP 66 during rotation (tested with water) ${ }^{2)}$
Material	stainless steel
Weight	1200 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{2)}$ welded V2A housing, output shaft sealed with quad-ring
The order key and accessories can be found on p. 18/19.

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSW 311-8	1 Nm	0.5 Nm	180 rpm
PSW 312-8	2 Nm	1 Nm	100 rpm
PSW 315-8	5 Nm	2.5 Nm	35 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos, EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600 s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	2.2 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	8 mm solid shaft or 8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP68 at standstill ${ }^{11}$, IP 66 during rotation (tested with water) ${ }^{11}$
Material	stainless steel
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{1)}$ welded V2A housing, output shaft sealed with quad-ring
The order key and accessories can be found on p. 18/ 19.

PSW 31_/33_-14-V (with solid shaft)

Product	Nominal torque	Self-holding torque	Nominal rated speed
PSW 311-14	1 Nm	0.5 Nm	180 rpm
PSW 312-14	2 Nm	1 Nm	100 rpm
PSW 332-14	2 Nm	1 Nm	125 rpm
PSW 335-14	5 Nm	2.5 Nm	50 rpm

Data interfaces

CANopen, PROFIBUS DP, DeviceNet, Modbus RTU, Sercos,
EtherCAT, PROFINET, EtherNet/IP, POWERLINK, IO-Link

Start-up duration	20% (basis time 600 s) at nominal torque
Mode of operation	S3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$ galvanically separated between control and motor and bus
Nominal current	PSW 31_: 2.4 A, PSW 33_: 3.1 A
Power consumption (control unit)	0.1 A
Positioning accuracy absolute measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range	250 rotations not subject to mechanical limits
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} 10 \mathrm{~g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	14 mm solid shaft or 14 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP68 at standstill ${ }^{11}$, IP 66 during rotation (tested with water) ${ }^{11}$
Material	stainless steel
Weight	700 g
Certificates	CE, optional: NRTL (UL, CSA, ANSI)

${ }^{1)}$ Welded V2A housing, output shaft sealed with quad-ring
The order key and accessories can be found on p. 18/19.

E |halstrup walcher

POSITIONING SYSTEMS 2 SERIES

PSE 21_/23_-8 walcher

PSE 21_/23_-8 with solid shaft

PSE 21_123_-8 with hollow shaft

hollow shaft ø8H9/20 depth
For details of the connections please see also p. 47 and the instruction manual.

The cable gland can be moved into different positions by turning the cover by 90°.

Functional block diagram PSE 21」23_-8

Start-up duration	50% (basis time 300 s)
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$
Nominal current	0.7 A
Power consumption (motor control unit)	0.1 A
Positioning accuracy measurement of position taken directly at the output shaft	$0.9{ }^{\circ}$
Positioning range quasi absolute measurement system: absolute measurement system:	unlimited 64 rotations
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g/}$ $10 . .2000 \mathrm{~Hz} \mathrm{5g}$
Output shaft	8 mm solid shaft or 8 mm hollow shaft with adjustable collar
Maximum axial force	20 N
Maximum radial force	40 N
Connections	electrical connections via terminal bar (max. $1.5 \mathrm{~mm}^{2}$)
Ambient temperature	$0 . .45{ }^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP54
Weight	500 g
Certificates	CE

Nominal torque	Nominal rated speed
1 Nm	40 rpm
2 Nm	20 rpm
1 Nm	80 rpm
2 Nm	40 rpm
	$211-8$
Data interfaces	$212-8$
CANopen	$231-8$
DeviceNet	232-8
Modbus RTU	CA
	DN
Address switches / baud rate switches	MB
without address/baud rate switches ${ }^{11}$	
with address/baud rate switches	
adjustable baud rate, 500 kBaud, 250 kBaud, 125 kBaud	C

"only for CANopen / DeviceNet

Output shaft	D
8 mm solid shaft	W
8 mm hollow shaft with adjustable collar	H

Measurement system						E
quasi absolute measurement system						0
absolute measurement system, 64 rotations						1
Order code	A	B	C		D	E
PSE	-	-	-	-		

© 3 halstrup walcher

HIPERDRIVE POSITIONING SYSTEMS

HDA 70
HDA Hub
PSE 441

HIPERDRIVE POSITIONING SYSTEMS

The HIPERDRIVE series facilates both direct wiring and indirect wiring via a Hub (see p. $8+9$)

ACCESSORIES FOR HIPERDRIVE HDA 70 AND PSE 441

HDA 70 with bus communication (Industrial Ethernet ${ }^{11}$ and PROFIBUS DP)				
A	Bus cable for Industrial Ethernet with an M12 connector (D-cod.) 10 m: Order no. 9508.0045 20 m: Order no. 9508.0046		Power supply cable with a $7 / 8^{\prime \prime}$ connector socket 10 m : Order no. 9508.0043 20 m: Order no. 9508.0044	
	Connector set for EtherCAT, PROFINET, EtherNet/IP: 7/8" power supply connector + $2 \times$ databus connector Order no. 9508.0050			
	Bus cable for PROFIBUS DP with an M12 connector socket (B-cod.) 10 m : Order no. 9508.0011 25 m : Order no. 9508.0017		Connector for PROFIBUS DP M12 connector socket (B-cod.) Order no. 9508.0027	
	Connector set for PROFIBUS DP: 7/8" power supply connector + databus connector and socket Order no. 9508.0034		Connector for PROFIBUS DP M12 connector (B-cod.) Order no. 9508.0012 with terminating resistors: Order no. 9508.0013	
HDA 70 with RS 485 (for indirect cabling via Hub)				
B	Simple flange adapter with cable: 1 m: Order no. 9508.0038 2 m: Order no. 9508.0033 5 m: Order no. 9508.0019 10 m : Order no. 9508.0010 15 m: Order no. 9508.0008		Connecting cable (with crimp contacts at one end) without adapter 2.5 m: Order no. 9508.0030 Adapter without cable Order no. 9508.0009	
PSE441 with RS 485				
	Power supply and bus cable with an M12 connector socket (A-cod.) 10 m : Order no. 9508.0022 15 m: Order no. 9508.0035		Connector M12 connector socket (A-cod.) for PSE 441 master Order no. 9601.0144 Connector M12 connector (A-cod.) for PSE 441 slave drive Order no. 9601.0152	

© halstrup

 walcher
HIPERDRIVE HDA 70

for direct wiring (with adapter)

Start-up duration	30% (basis time 300 s)	
Mode of operation	S3	
Supply voltage	$24 \mathrm{VDC} \pm 15 \%$	
Nominal current	4.8 A	
Positioning accuracy	$\pm 1^{\circ}$	
Positioning range	32000 rotations not subject to mechanical limits	
Shock resistance in accordance with IEC/DIN EN 60068-2-27	10 g 30 ms	
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .150 \mathrm{~Hz} 10 \mathrm{~g}$	
Insulation class	B (120)	
Maximum axial force	axial shaft: 150 N radial shaft: 165 N	
Maximum radial force	axial shaft: 200 N radial shaft: 440 N	
Ambient temperature	max. $45^{\circ} \mathrm{C}$	
Storage temperature	$-25 . .75{ }^{\circ} \mathrm{C}$	
Protection class	IP65	
Weight	axial $2.8 \mathrm{~kg} /$ radial 3.2 kg	
Certificates	CE	
Product Nominal torque	Self-holding torque	Nomin speed
HDA $70 \quad 15 \mathrm{Nm}$	25 Nm	27 rpm

Data interfaces	A
PROFIBUS DP	DP
EtherCAT	EC
PROFINET	PN
EtherNet/IP	EI
RS 485 ${ }^{11}$	I

${ }^{1)}$ for control via HUB

Shaft position	B
axial, without bevel gear	L
radial, with bevel gear $\mathrm{i}=1$, position type 1	1
radial, with bevel gear $\mathrm{i}=1$, position type 2	2
radial, with bevel gear $\mathrm{i}=1$, position type 3	3
radial, with bevel gear $\mathrm{i}=1$, position type 4	4

Connections

Cable gland (for DP) B
Connector, 6-pin (RS 485 without Hub)
Connector, 6 -pin (RS 485 with Hub)
Cable gland for 24 VDC , S
$2 \times \mathrm{M} 12$ female connector for IE-bus in/out
Male connector (7/8") for 24 VDC,
$2 \times$ M12 female connector for IE-bus in/out

Output shaft design	D
10 mm solid shaft with feather key (radial/axial)	S
10 mm hollow shaft (only radial, with bevel gear)	H10
12 mm hollow shaft (only radial, with bevel gear)	H 12

Order code	A		B		C		D	
HDA70	-		-		-		-	

HDA 70 with adapter (axial, without bevel gear)

cable gland or
$7 / 8^{\prime \prime}$ connector for supply voltage

HDA 70 with adapter (radial, with bevel gear, $\mathrm{i}=1$)

Shaft position

For details of the connections please see also p. 47 and the instruction manual.

HDA 70 (axial, without bevel gear)

HDA 70 (radial, with bevel gear, $\mathbf{i}=1$)

For details of the connections please see also p. 47 and the instruction manual.

Shaft position

24 VDC $\pm 15 \%$
300 mA
8 g 20 ms
$10 . .500 \mathrm{~Hz} 10 \mathrm{~mm}$

CE
$6 x$ adjustable collar max. crosssection of conductor $1.5 \mathrm{~mm}^{2}$ cable lug M6
via external terminal resistance
M12, 5-pin TypeB (PROFIBUSDP) 2x M12, 5-pin Type D (Ethernet-based buses) $2 x$

Address range adjustable
via switches
Housing
Ambient temperature
Storage temperature
Protection class with IEC 60529
Weight
0.. 125
(0.. 99 for Ethernet-based buses)
die-cast zinc
$0 . .45^{\circ} \mathrm{C}$
$-25 . .75^{\circ} \mathrm{C}$
IP65
4.5 kg

Data interfaces ${ }^{11}$

PROFIBUS DP
EtherCAT
PROFINET PN
EtherNet/IP
via RS 485 between HUB and HDA/PSE 441

© |halstrup

walcher

Start-up duration	30% (basis time 300 s)
Mode of operation	S 3
Supply voltage	$24 \mathrm{VDC} \pm 10 \%$
Nominal current	$\pm 2 . \mathrm{A}^{\circ}$
Positioning accuracy measurement of position taken directly at the output shaft	250 rotations
Positioning range	30 g 11 ms
Shock resistance in accordance with IEC/DIN EN $60068-2-27$	$10 . .150 \mathrm{~Hz} 10 \mathrm{~g}$
Vibration resistance in accordance with IEC/DIN EN $60068-2-6$	10 mm solid shaft with feather key
Output shaft	20 N
Maximum axial force	50 N
Maximum radial force	$10 . .45^{\circ} \mathrm{C}$
Ambient temperature	$-10 . .70^{\circ} \mathrm{C}$
Storage temperature	IP 65
Protection class	plastic
Housing	600 g
Weight	CE
Certificates	

Nominal torque	Peak torque	A
1.5 Nm	2.5 Nm	441
@ 40 rpm	@ 10 rpm	

Data interfaces	B
RS 485	I

Connections

Standard for connection to the Hub C

S

Standard $+2^{\text {nd }}$ connection for further device, power supply B looped through, bus: daisy chain RS $485{ }^{11}$

A "daisy chain" is only possible if the control is used as the bus master, not possible using the Hub.

Order code	A		B	C	
PSE	-	441	-	1	-

PSE 441

For details of the connections please see also p. 47 and the instruction manual.

26+1.5

$.26+1.5$

W |halstrup
 walcher

ANALOGUE POSITIONING SYSTEMS

PSE 100/200
PSE 272

CO halstrup walcher

Nominal current	PSE 100: 0.2A PSE 200: 1 A
No-load current	0.2 A
Positioning resolution	0.5% of positioning range
Positioning accuracy	2% of positioning range
Positioning range	PSE 100: max. 20 rotations PSE 200: max. 50 rotations
Shock resistance in accordance with IEC/DIN EN 60068-2-27	50 g 11 ms
Vibration resistance in accordance with IEC/DIN EN 60068-2-6	$10 . .55 \mathrm{~Hz} 1.5 \mathrm{~mm} /$ $55 . .1000 \mathrm{~Hz} \mathrm{10g} /$ $10 . .2000 \mathrm{~Hz} 5 \mathrm{~g}$
Output shaft	12 mm solid shaft (with flattening)
Maximum axial force	20 N
Maximum radial force	30 N
Ambient temperature	$0 . .50^{\circ} \mathrm{C}$
Storage temperature	$-10 . .70^{\circ} \mathrm{C}$
Protection class	IP 55
Weight	900 g
Certificates	CE

Product	Nominal torque	Nominal rated speed	A
PSE 100	2.5 Nm	2 rpm	$100 / 1$
	5 Nm	1 rpm	$100 / 2$
10 Nm	0.5 rpm	$100 / 3$	
PSE 200	10 Nm	0.25 rpm	$100 / 4$
	1 Nm	30 rpm	$200 / 1$
5 Nm	5 rpm	$200 / 2$	
	10 Nm	2 rpm	$200 / 3$
	10 Nm	1 rpm	$200 / 4$
10 Nm	0.5 rpm	$200 / 5$	
10 Nm	0.25 rpm	$200 / 6$	

Default analog target value B

$0 . .10 \mathrm{VDC}\left(R_{L}>2 \mathrm{k} \Omega\right)$	A
$0 . .20 \mathrm{~mA}\left(R_{L}<500 \Omega\right)$	B
$4.20 \mathrm{~mA}\left(R_{L}<500 \Omega\right)$	C

$4 . .20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{L}}<500 \Omega\right)$

Supply voltage		C
PSE 200	$24 \mathrm{VDC}(+20 /-15 \%)$	A
PSE 100	$24 \mathrm{VAC}(+6 /-15 \% 50 \mathrm{~Hz})$	B
	$115 \mathrm{VAC}(+6 /-15 \% 50 \mathrm{~Hz})$	C
	$230 \mathrm{VAC}(+6 /-15 \% 50 \mathrm{~Hz})$	D

positioning range	D
$0 . .360^{\circ}$	$-\quad$ -
max. $50($ PSE 200) $/ 20$ rotations (PSE 100)	$-U$

Output signal actual value	E	Rotational direction	F		
$0 . .10 \mathrm{~V}$	A	left		li	
$0 . .20 \mathrm{~mA}$	right		re		
$4 . .20 \mathrm{~mA}$	B				
Order code	A	B	C	D	E

Functional block diagram PSE 272

FOCUS YOUR THINKING ON NDUSTRY 4.0

Advanced production: Industry 4.0

Highly flexible and smooth design of all production processes - that is a key point of the Industry 4.0 concept. One aspect is networking things involved in production together: machines, equipment, tools, storage systems and also the resulting products.

The term Internet of Things describes networking via information technology. A networked factory is called a smart factory. The things involved in smart factory production are not just physical. They are reflected in the Internet of Things.
 is stored there with a lot of data. If something involved in production is represented by a virtual image and networked with others, it is called a cyber-physical system. It interacts with other systems.

Positioning systems as cyber-physical systems

CYBER-PHYSICAL SYSTEMS

Our positioning systems have all the components to constitute a self-contained cyber-physical system:

- Actuators on the drive: gearbox, motor, motor control
- Absolute encoders: positioning sensor
- Embedded system: decentralised on-board intelligence

The positioning system moves independently to target positions and reacts to deviations. It differentiates between contamination or blockage of its axis and acts: accelerating if the spindle is contaminated and braking if there are blockages caused by obstacles.

WATCH OUR FILMS AS WELL

A number of short films are available on our website. These give you a quick overview and also a few insights into some of the most important details.
www.halstrup-walcher.com

- Navigation: "Applications"
- "Positioning systems"

Find films on the following topics:

- Mechanical engineering approaches to automation (under "Machine concepts with format changeover")
- Advantages of automated format changeover from the viewpoint of the machinery user e.g. in furniture manufacturing (under "Format changeover - wood-processing")
- Automation in bottle filling: Precision, preventive maintenance and bus communication flexibility (under "Format changeover - bottling plants ")

OVERVIEW: BUS COMMUNICATION

Bus	Topology	max. number	Terminating resistance	Connection ${ }^{11}$	Jog keys	Addressing	Bus length @ Baud rate ...	Description of device ${ }^{2)}$
PSE 2								
CANopen	series (all slaves connected in parallel)	126	$2 \times 120 \Omega$ not integrated in the device/ attach to cable ends	spring clamp terminals (motor power supply (M) + control power supply (S) + data (D)) $\mathrm{M} 12(\mathrm{M}+\mathrm{S})$ and M 12 (D) possible	without	via switch and bus	250 kBaud: 250 m	EDS
DeviceNet		63					500 kBaud: 100 m	
Modbus RTU		247	$2 \times 390 \Omega+1 \times 220 \Omega$ integrated in the device, activation possible				9600 Baud: 500 m 38400 Baud: 50 m	-
PSE/PSS/PSW 30_, 31, 32_, 33_								
CANopen	series (all slaves connected in parallel)	126	$2 \times 120 \Omega$ not integrated in the device/ attach to cable ends	$\begin{gathered} \text { M12 - } \mathrm{A}(\mathrm{M}+\mathrm{S}), 2 \times \mathrm{M} 12-\mathrm{B}(\mathrm{D}) \\ \text { optional: Sub - D9 (D), } \\ \text { Sub - D9 (M + S), } \\ \mathrm{M} 12-\mathrm{B}(\mathrm{M}+\mathrm{S}), 2 \times \mathrm{M} 12-\mathrm{A}(\mathrm{D})^{4)} \end{gathered}$	M8 connector ${ }^{5)}$	via switch and bus	$\begin{aligned} & 250 \text { kBaud: } 250 \mathrm{~m} \\ & 500 \text { kBaud: } 100 \mathrm{~m} \end{aligned}$	EDS
DeviceNet		63		M12-B (M), $2 \times$ M12-A $(S+D)^{4)}$				
PROFIBUS DP		$\begin{gathered} 32 \\ 126(R)^{31} \end{gathered}$	$2 \times 390 \Omega+1 \times 220 \Omega$ integrated in the device, activation possible	M12-A (M + S), $2 \times \mathrm{M} 12-B(D)$ optional: Sub - D9 (D) ${ }^{41}$		via switch (and bus)	1.5 MBaud: 200 m 12 MBaud: 100 m	GSD
Modbus RTU		247	$2 \times 390 \Omega+1 \times 220 \Omega$ integrated in the device, activation possible	$\begin{aligned} & \mathrm{M} 12-\mathrm{A}(\mathrm{M}+\mathrm{S}), \\ & 2 \times \mathrm{M} 12-\mathrm{B}(\mathrm{D})^{4)} \end{aligned}$		via switch and bus	$\begin{aligned} & 9600 \text { Baud: } 500 \mathrm{~m} \\ & 38400 \text { Baud: } 50 \mathrm{~m} \end{aligned}$	-
IO-Link	star via hub (point to point)	limited by the bus master	not required	M12-A (M+S + D	without	not required	38400 Baud: 20 m	IOOD
Sercos	series, ring or star via hub (point to point)	511		$\begin{aligned} & M 12-A(M+S), 2 \times M 12-D(D) \\ & \text { or } M 12-Y(M+S+D) \end{aligned}$	M8 connector ${ }^{5)}$	via switch and bus	100 MBaud: 100 m	SDDML
EtherCAT		65535						ESI
PROFINET		limited						GSDML
EtherNet/IP		by PLC						EDS
POWERLINK		239						XDD
PSE 34_								
CANopen	series (all slaves parallel)	126	$\begin{aligned} & 2 \times 120 \Omega \\ & \text { not integrated in the device/ } \\ & \text { attach to cable ends } \end{aligned}$	HAN4A (M + S), $2 \times \mathrm{M} 12-\mathrm{B}(\mathrm{D})$, optional: $2 \times \mathrm{M} 12-\mathrm{A}(\mathrm{D})$	without	via switch and bus	$\begin{aligned} & 250 \text { kBaud: } 250 \text { m } \\ & 500 \text { kBaud: } 100 \text { m } \end{aligned}$	EDS
PROFIBUS DP		$\begin{gathered} 32 \\ 126(R)^{3 i} \end{gathered}$	$2 \times 390 \Omega+1 \times 220 \Omega$ integrated in the device, activation possible	HAN4A (M+S), $2 \times \mathrm{M} 12-\mathrm{B}(\mathrm{D})$	M8 connector	via switch (and bus)	1.5 MBaud: 200 m 12 MBaud: 100 m	GSD
Sercos	series, ring (point to point)	511	not required	M12-A (M+S), $2 \times \mathrm{M} 12-\mathrm{D}(\mathrm{D})$	M8 connector	via switch and bus	100 MBaud: 100 m	SDDML
EtherCAT		65535						ESI
PROFINET		ted						GSDML
EtherNet/IP		by PLC						EDS
POWERLINK		239						XDD
HIPERDRIVE Hub								
PROFIBUS DP	series (all slaves parallel)	$\begin{gathered} 32 \\ 126(R)^{31} \end{gathered}$	$2 \times 390 \Omega+1 \times 220 \Omega$ not integrated in the device/ attach to cable ends	cable lug (motor power supply), M12-A (S), $2 \times$ M12-B (D)	can be accessed after	via switch	1.5 MBaud: 200 m 12 MBaud: 100 m	GSD
EtherCAT	series, ring (point to point)	65535	not required	cable lug (motor power supply), M12-A (S), $2 \times$ M12-D (D)	opening the housing cover	via switch and bus	100 MBaud: 100 m	ESI
PROFINET		limited						GSDML
EtherNet/IP		by PLC						EDS
HIPERDRIVE HDA 70								
PROFIBUS DP	series (all slaves parallel)	$\begin{gathered} 32 \\ 126(R)^{31} \end{gathered}$	$2 \times 390 \Omega+1 \times 220 \Omega$ integrated in the device, activation possible	Screw collars ($\mathrm{M}+\mathrm{S}+\mathrm{D}$), Screw collars ($M+S$), $2 \times \mathrm{M} 12-B(D)$, $7 / 8^{\prime \prime}(M+S), 2 \times M 12-B(D)$	on the exterior of the device	via switch	1.5 MBaud: 200 m 12 MBaud: 100 m	GSD
EtherCAT	series, ring (point to point)	65535	not required	screw collars or 7/8" connectors ($\mathrm{M}+\mathrm{S}$), $2 \times \mathrm{M} 12-\mathrm{D}$ (D)		via switch and bus	100 MBaud: 100 m	ESI
PROFINET		limited						GSDML
EtherNet/IP		by PLC						EDS
RS 485	series	254	$2 \times 1 \mathrm{k} \Omega+1 \times 130 \Omega$ not integrated in the device/attach to cable ends/optionally available in the device	Molex series 5557/69 (M + S + D)		only possible via bus	$\begin{aligned} & 9600 \text { Baud: } 500 \mathrm{~m} \\ & 38400 \text { Baud: } 50 \mathrm{~m} \end{aligned}$	-
PSE441								
RS 485	series (point to point)	254	not required	$1 . .2 \times \mathrm{M} 12-\mathrm{A}(\mathrm{M}+\mathrm{S}+\mathrm{D})$	on the exterior of the device	via bus	$\begin{aligned} & 9600 \text { Baud: } 500 \mathrm{~m} \\ & 38400 \text { Baud: } 50 \mathrm{~m} \end{aligned}$	-

[^1]halstrup-walcher GmbH
Stegener Str. 10
79199 Kirchzarten
Germany
Tel. + 49 (0) 7661 3963-0
Fax + 49 (0) 7661 3963-99
info@halstrup-walcher.de
www.halstrup-walcher.com

Austria / Hungary /
 Poland / Slowenia

Kwapil \& Co. GmbH
Kammelweg 9
1210 Wien
Austria
Tel. $+43(0) 12788585$
Fax + 43 (0) 12788586
verkauf@kwapil.com
www.kwapil.com

China

Shanghai Yu Ting
Scientific Co., LTD
Room 602, No. 45, Lane 1661 Jialour Rd., JiaDing District,
Shanghai City. PRC
Tel. + 862169153366
Fax +86 2169153939
ch-sys@ch-sys.net
www.ch-sys.net

Great Britain / Ireland

HMK LTD
Automation and Drives
Congleton, Cheshire
CW12 1OJ
England
Tel. +44 1260279411
Fax +44 1260281022
enquiries@hmkdirect.com
www.hmkdirect.com

India

Parshvi Technology
Shop No : 10, Block A, Ground Floor
Pushp Business Campus,
S P Ring Road, Vastral
AHMEDABAD 382418
GUJARAT
Tel. +91 8128705212
ram@parshvitechnology.com
www.parshvitechnology.com

Italy

halstrup-walcher S.r.
Viale Colleoni, 15
(Palazzo Orione, 2)
20864 - Agrate Brianza (MB)
Tel. +39 0399630880
Fax +390399630883 info@halstrup-walcher.it www.halstrup-walcher.it

Netherlands

Elmekanic B.V.
Spelleweg 3
7475 GV Markelo
Tel. + 31 (0) 547367357
Fax + 31 (0) 547367356
info@elmekanic.nl
www.elmekanic.nl

Slowakia / Czech Republic

Kwapil \& Co. GmbH
Havní 1054/131
62400 Brno
Czech Republic
Tel. +420 (0) 541211538
Fax +420 (0) 541217467
sales@kwapil.com
www.kwapil.cz

Spain

INTRA AUTOMATION S. L.
PT.Paterna, R. de Auguste I Louis Lumiere, $n^{\circ} 45$, Nave 3 46980 Paterna, Valencia
Tel. +34963961008
Fax +34963961 018
info@intraautomationsl.com
www.intraautomationsl.com

Switzerland

Trelco AG

Gewerbestrasse 10
5037 Muhen
Tel. + 41 (0) 627376262
Fax + 41 (0) 627376270
trelco@trelco.ch
www.trelco.ch

Taiwan

Chih Horng Scientific Co., Ltd.
6F., No.69-5, Sec. 2,
Zhongzheng E. Rd.,
Tamsui Dist.,
New Taipei City 251
Tel. +886(02) 28080169
Fax +886 (02) 28080176
chih.mail@msa.hinet.net
www.ch-sys.com

Turkey

CAGDAS Automation
\& Engineering Co. Ltd.
Kizilay cad. 28006 sok No: 5
01010 Seyhan/Adana
Tel. + 90 (0) 3223598185
Fax +90(0) 3223593639
cagdas@cagdasltd.com.tr
www.cagdasltd.com.tr

USA

Intelligent Measurement Solutions LLC
3635 Dawes
49508 Grand Rapids, MI
Tel. +1 (616) 6087919
Mobil +1 (734) 637-1596
Fax +1 (616) 6087954
darrell@i-m-solutions.net
www.h-wusa.com

[^0]: Gain time and avoid errors with automated format changeovers

[^1]: ${ }^{11} \mathrm{M}$ (motor power supply), S (control power supply), D (data)
 ${ }^{2)}$ description files available to download at www.halstrup-walcher.de/en/software
 ${ }^{3}$) with repeater (R)
 ${ }^{4}{ }^{\text {4) }}$ as connector solution/plug-in solution M12-Y (M+S+D) on request
 ${ }^{5)}$ not for PSW or IO-Link

