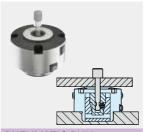



COMPACT PNEUMATIC SWING CLAMPS

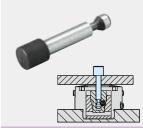
Part No. AMWSW-W

COMPACT PNEUMATIC SWING CLAMPS WITH ROD

Part No. AMWSW-W-D


COMPACT PNEUMATIC SWING CLAMPS WITH DETECTING PORTS (Gasket Piping)

Part No. AMWSW-W-AG


COMPACT PNEUMATIC SWING CLAMPS WITH DETECTING PORTS (Thread Piping)

Part No. AMWSW-W-AC

PNEUMATIC PULL **CLAMPS**

Part No. AMWPD-W

CLAMPING PINS

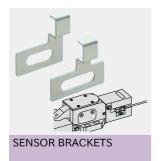
Part No. AMWPD-X

CLAMPING SCREWS

Part No. AMWPD-M

CLAMPS

Part No. AMCH-W

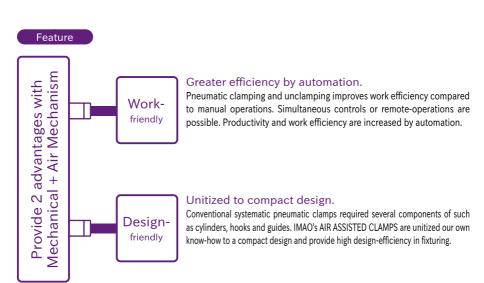


CLAMPS

Part No. AMWD-WS

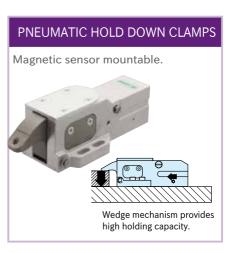
PNEUMATIC CLAMPS PNEUMATIC CLAMPS

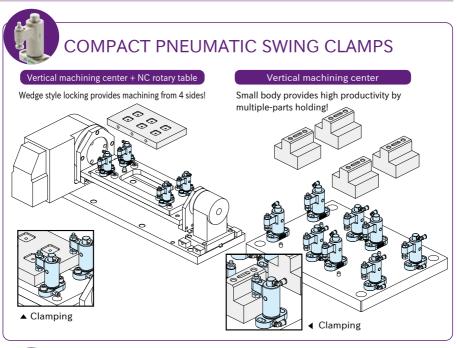
Part No. AMWD-WS-B

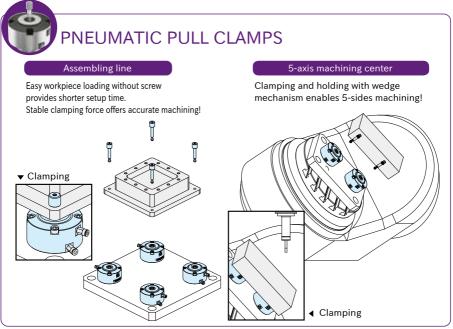

AIR ASSISTED CLAMPS

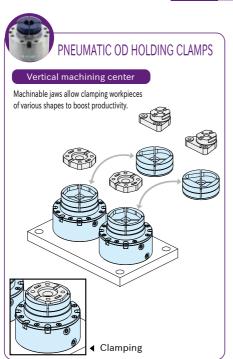
AIR ASSISTED CLAMPS are IMAO's automated clamps that satisfy needs for much more efficiency and automation in production. Our original mechanical clamp technology in combination with air provides diverse lineup of products.

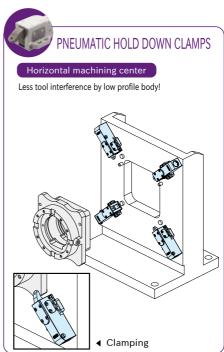
With our own know-how as a clamping tools manufacturer, we unitized the clamping devices to support making compact automated fixtures.


CAD Download: https://www.imao.com/en/

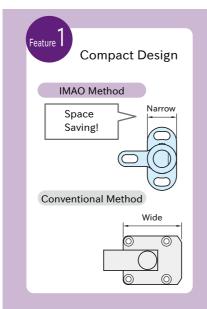


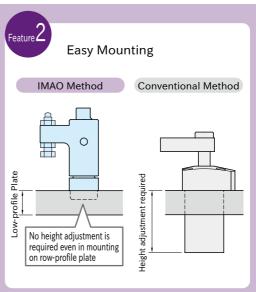



APPLICATION EXAMPLE for AIR ASSISTED CLAMPS



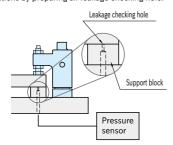
PNEUMATIC CLAMPS PNEUMATIC CLAMPS



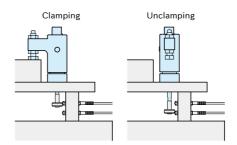

COMPACT PNEUMATIC SWING CLAMPS

COMPACT PNEUMATIC SWING CLAMPS

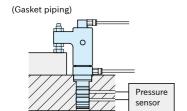
In addition to IMAO's long selling swing clamps, we provide the new Pneumatic Swing Clamps!



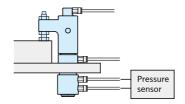
Application Example

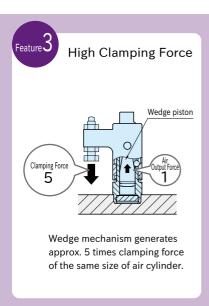

Standard, Air leakage cheking

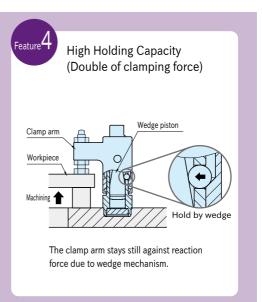
Pressure sensor detects the clamping/unclamping conditions by preparing air leakage checking hole.



With Rod


Clamping/unclamping conditions can be detected by switch.

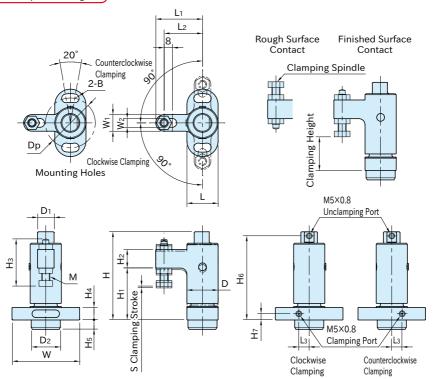



With Detecting Ports Using with pressure sensors, clamping/unclamping conditions can be detected.

(Thread piping)

AMWSW-W

COMPACT PNEUMATIC SWING CLAMPS



Body / Clamp Arm / Piston	Clamping Spindle
SCM440 steel Electroless nickel plated	S45C steel Quenched and tempered Electroless nickel plated

	ο	Cla	amp	ing	Heigl	nt *)														
Part Number	Clamping Direction	Finished S	urface Co	ntact	Rough Surfa	ace Contact	S	L2	L ₁	W	L	H ₄	В	Dp	Н	D	W ₁	W ₂	H ₂	H ₁
	Direction	Min.	Ma	ax.	Min.	Max.														
AMWSW16R-W	CW	32.5	3	0	33.5	40	1.2	37	45	65	30	12	0 1	48	05	30	16	8.4	18	50
AMWSW16L-W	CCW	32.5	٥	9	33.3	40	1.2	31	45	03	30	12	0.4	40	00	30	10	0.4	10	50
AMWSW20R-W	CW	41.5	5	4	44	53.5	1.6	45	55	85	40	15	10.5	61	106	40	20	10.4	22	65
AMWSW20L-W	CCW	41.5	3	'	44	55.5	1.0	45	55	00	40	13	10.5	04	100	40	20	10.4	22	00
Part Number	М		Нз	D ₁	D ₂	Нs	Lз	ŀ	H 6	H ₇		eratir Pressu (MPa	ire	F	ampi orce N) **	Ŭ (Сар	ding acity) **)		eight g)
AMWSW16R-W AMWSW16L-W	M 8×1	.25	15.5	16	28	9	10		81	6	\		١.7	(0.4		0	.8	Ę	500
AMWSW20R-W AMWSW20L-W	M10×1	.5	57	22	35	11	13	1	01	8		0.5~0.7		0.65			1	.3	11	120

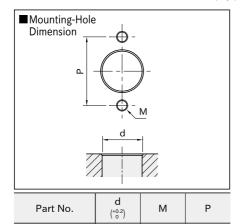
^{*)} Clamping height can be adjusted within this range.

How To Use

■ Setting Clearance between Workpiece

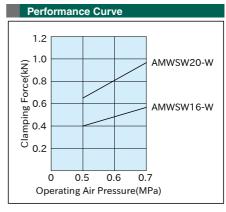
A clearance between clamping spindle and workpiece should be roughly half of the clamping stroke. The clamp arm swings horizontally.

Follow the steps below to adjust the clamping spindle to create proper clearance.



 Apply air to the unclamping port with an air blow gun to move the clamp to unclamping position.

AMWSW16-W


AMWSW20-W

- Rotate the arm manually to straight direction, and create an appropriate clearance to the workpiece.
 Putting a feeler gauge between the workpiece and the clamping spindle facilitates this setting.
- 3. Fix the clamping spindle with nuts.

28

35

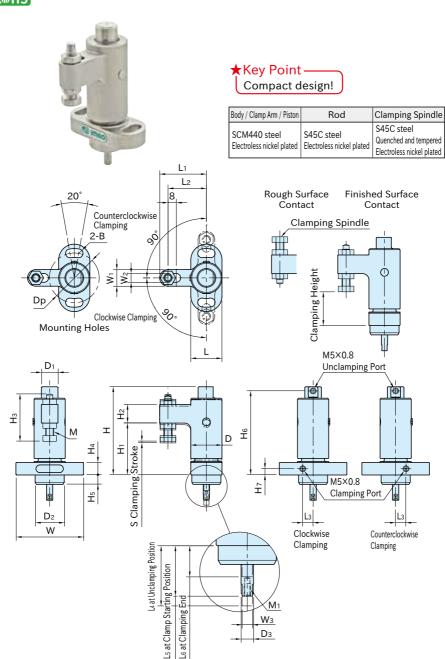
M 8×1.25

M10×1.5

48

64

^{**)} The clamping force and the holding capacity above are at 0.5 MPa.



AMWSW-W-D

COMPACT PNEUMATIC SWING CLAMPS WITH ROD

R⊕#S

IMAO

Dз

	Clar	nping		Cla	mp	ing	He	eigh	it *)		_															
Part Number	Dire	ction	Finis	shed Su	rtace Ci	ontact	ct Rough Surface Contact		tact	S	L ₂	L ₁	W	L	H ₄	В	Dp	Н	D	W ₁	W ₂	H ₂	H1		М	
				1in.	Ma		Mi		Max																	
AMWSW16R-W-D	С	W	ر ا	2.5	3	0	33	_	40		10	27	15	65	20	12	0.4	48	05	30	16	0 1	10	50	M	8×1.25
AMWSW16L-W-D	C	CW	٥	2.5	٥	פו	33	.5	40		1.2	31	45	03	30	12	0.4	40	00	30	10	0.4	10	50	IVI	0 ^ 1.20
AMWSW20R-W-D	С	W		1.5	5	4	44		53.	_	16	15	55	05	4٥	15	10 5	61	106	40	20	10.4	22	65	111	0×1.5
AMWSW20L-W-D	C	CW	4	1.5	٥	'	44		55.	5	1.0	45	55	00	40	13	10.5	04	100	40	20	10.4	22	03	IVII	0.1.5
			_													. (Operat	ing Ai	r	Clam	ning		Hol	ding		Weight
Part Number	Нз	D₁	D ₂	H5	Lз	H6	H7	L ₄	L ₅	Le	•	М	1	Da	3 W	/ol	ressur	•		orce(apacit	•		(g)
AMWSW16R-W-D	45.5	10	00	9	40	81	6	00	24	17	N	13×	0.5	6	5	.				Λ,	25		^	7		F10
AMWSW16L-W-D	45.5	10	28	9	10	01	٥	29	24	1/		ept)	h 6	٥	2).5^	۰.	,	0.	33		U	.7		510
AMWSW20R-W-D	57	22	35	11	12	101		25	20	10	N	14×	0.7	8	7	- 1 '	J.:J^`	٠0.	′ [0	==		-1	1		1130
AMWSW20L-W-D	3/	22	J	''	13	101 8 35 2		29	19.	Depth		h 8	0	'					0.55			1.1			1130	

^{*)} Clamping height can be adjusted within this range.

Feature

The rod on the bottom of the clamp can be used for detecting clamping/unclamping with switches.

How To Use

■ Setting Clearance between Workpiece

A clearance between clamping spindle and workpiece should be roughly half of the clamping stroke. The clamp arm swings horizontally. Follow the steps below to adjust the clamping spindle to create proper clearance.

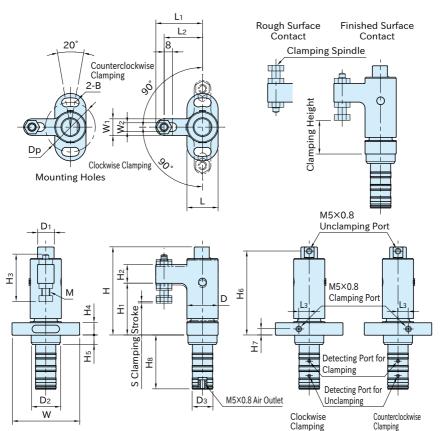
- 1. Apply air to the unclamping port with an air blow gun to move the clamp to unclamping position.
- Rotate the arm manually to straight direction, and create an appropriate clearance to the workpiece. Putting a feeler gauge between the workpiece and the clamping spindle facilitates this setting.
- Fix the clamping spindle with nuts.

Mounting-Hole Dimension -
d

Part No.	d (+0.2)	М	Р
AMWSW16-W-D	28	M 8×1.25	48
AMWSW20-W-D	35	M10×1.5	64

^{**)} The clamping force and the holding capacity above are at 0.5 MPa.

AMWSW-W-AG COMPACT PNEUMATIC SWING CLAMPS WITH DETECTING PORTS (Gasket Piping)


R⊕#S

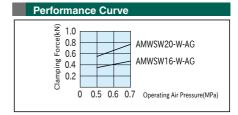
IMAO

★Key Point -Compact design!

Body / Clamp Arm/ Piston	Holder	Clamping Spindle
SCM440 steel Electroless nickel plated	A5056 aluminum	S45C steel Quenched and tempered Electroless nickel plated

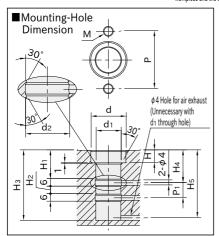
			Clan	nping	s He	ight	*)															
Part Number	Clamping Direction	Finished Su		• •	~			ontact	S	L ₂	L ₁	W	L	H ₄	В	Dp	Н	D	W ₁	W ₂	H ₂	Ηı
	Direction	Min.	M	lax.	N	lin.	M	lax.														
AMWSW16R-W-AG	CW	32.5	Τ,	39	,	3.5	4	<u></u>	1.2	27	15	65	20	12	8.4	10	05	30	16	0.1	18	50
AMWSW16L-W-AG		32.5	<u> </u>	J y	٥	ა.ა	4	0	1.2	31	45	05	30	12	0.4	40	00	30	10	0.4	10	30
AMWSW20R-W-AG		41.5		51	4	4	5	3.5	1 6	45	55	85	<u>4</u> 0	15	10.5	64	106	<u>4</u> 0	20	10.4	22	65
AMWSW20L-W-AG	CCW	71.5		<i>-</i>				0.0	1.0	70	55	00	0	10	10.0	07	100	70	20	10.7		00
Part Number	М	Нз	D1	Da	H ₅	L3	Нс	H ₇	μа	D ₂	(Opera	ting		Clan	nping		Н	oldinį	g	Wei	ght
I alt Nullibel	171	113	Di	D2	1 15	L3	1 16	1 17	1 18	D 3	Air P	ressu	re(MF	a)	Force	(kN) *	*) (Capac	city(kl	N) **)	(8	<u>s</u>)
AMWSW16R-W-AG	M 8×1.2	25 45.5	16	28	9	10	81	6	52	20					٥	35			0.7		5	40
AMWSW16L-W-AG	-	-5.5	10	20	J	10	01	١	JZ	۷۷	١	.5~	·Λ 7	· L	0.	JJ			0.7		J	1 U
AMWSW20R-W-AG	M10×1.5	5 57	22	35	11	13	101	8	62	25	0		0.7		٥	55			1.1		11	80
AMWSW20L-W-AG	WITOATA	J 01		00	''		.01		٥2						٠.	00					- 1	

^{*)} Clamping height can be adjusted within this range. **) The clamping force and the holding capacity above are at 0.5 MPa.


Feature

Using with pressure sensors, clamping/unclamping conditions can be detected.

How To Use


■ Setting Clearance between Workpiece

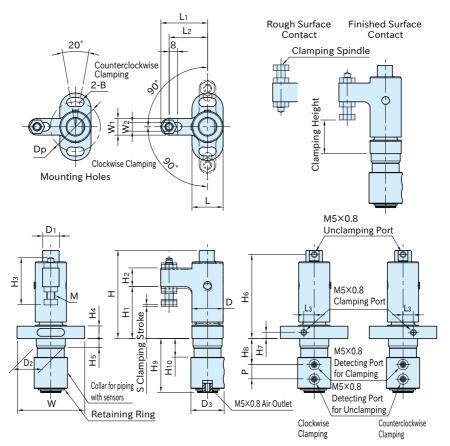
A clearance between clamping spindle and workpiece should be roughly half of the clamping stroke. The clamp arm swings horizontally. Follow the steps below to adjust the clamping spindle to create proper clearance.

- 1. Apply air to the unclamping port with an air blow gun to move the clamp to unclamping position.
- 2. Rotate the arm manually to straight direction, and create an appropriate 3. Fix the clamping clearance to the workpiece. Putting a feeler gauge between the workpiece and the clamping spindle facilitates this setting.
- spindle with nuts.

■ Connection with Pressure Sensors To check clamping/unclamping conditions, pressure sensor is required. Please contact us for the detail. Connected to detecting port for clamping Pressure sensors Connected to detecting port for unclamping Connected to other clamps Connected to other clamps

Part No.	d (+0.2)	Н	d ₁ (H8)	H ₁	H ₂	d2	Нз	P ₁	H ₄	H ₅	М	Р
AMWSW16-W-AG	28	10	20	23	6	21	56 or more	12	26	54	M 8×1.25	48
AMWSW20-W-AG	35	12	25	29	10	26	66 or more	16	32	64	M10×1.5	64

AMWSW-W-AC COMPACT PNEUMATIC SWING CLAMPS WITH DETECTING PORTS (Thread Piping)


R⊕#S

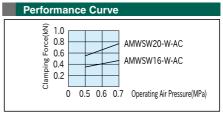
IMAO

★Key Point -Compact design!

Body / Clamp Arm / Piston	Collar	Clamping Spindle
SCM440 steel Electroless nickel plated	A5056 aluminum Anodized	S45C steel Quenched and tempered Electroless nickel plated

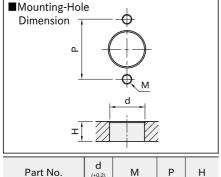
			(Cla	mpi	ing	Hei	ght	*)																
Part Number	Clamping Direction	Finis	shed S	Surfac	e Con	tact	Rougl	n Surf	ace C	Contac	t :	s	L2	Lı	W	L	H ₄	В	Dp	Н	D	W ₁	W ₂	H ₂	Ηı
	Birection		Min. Max			Min.			Max.																
AMWSW16R-W-AC	CW	,	2.5		39		33	-	4	٥	4	2	27	15	C.E.	20	12	0.4	48	0.5	30	16	0.4	18	E0
AMWSW16L-W-AC	CCW	د ا	2.5		39		33	.5	4	·U	'	ا ۷۰	3/	45	00	30	12	0.4	40	00	30	10	0.4	10	50
AMWSW20R-W-AC	CW	1	1 5		51		44		_	3.5	4	6	15	55	05	40	15	10 5	61	106	40	20	10.4	22	65
AMWSW20L-W-AC	CCW	4	41.5		51		44		3	55.5		.0	45	55	00	40	13	10.5	04	100	40	20	10.4	22	05
Part Number	М	Нз	H ₃ D ₁ [Нs	Lз	3 H6 H7		Н	Р	H ₉	D	зН			ating ssur (IPa)	e	F	mpi orce N) *'	•	Ca	oldii pac N) *	ity	Wei	ight g)
AMWSW16R-W-AC AMWSW16L-W-AC	M 8×1.25	45.5	45.5 16 2		9	10	81 6		25	14	52	32	2 1	8	۰.	^	_	0.35				0.7		5	80
AMWSW20R-W-AC AMWSW20L-W-AC	M10×1.5	57 22 35		35	11	13	3 101 8		31	18	62	38	3 2	24	0.5~0.7		'	0.55			1.1			12	40

^{*)} Clamping height can be adjusted within this range.

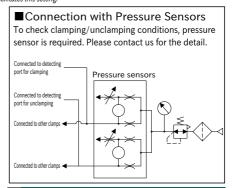

Feature

Using with pressure sensors, clamping/unclamping conditions can be detected.

How To Use


■ Setting Clearance between Workpiece

A clearance between clamping spindle and workpiece should be roughly half of the clamping stroke. The clamp arm swings horizontally. Follow the steps below to adjust the clamping spindle to create proper clearance.



- 1. Apply air to the unclamping port with an air blow gun to move the clamp to unclamping position.
- Rotate the arm manually to straight direction, and create an appropriate clearance to the workpiece. Putting a feeler gauge between the workpiece and the clamping spindle facilitates this setting.
- 3. Fix the clamping spindle with nuts.

Part No.	d (+0.2)	М	Р	Н
AMWSW16-W-AC	28	M 8×1.25	48	16 or less
AMWSW20-W-AC	35	M10×1.5	64	22 or less

Note

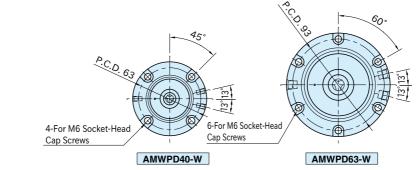
Attach the collar and the retaining ring to the product by yourself.

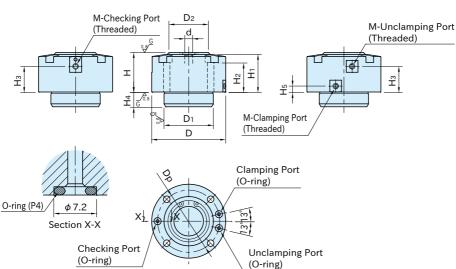
The collar rotates for 360°freely. Set the collar to your desired position.

^{**)} The clamping force and the holding capacity above are at 0.5 MPa.

AMWPD-W

PNEUMATIC PULL CLAMPS


IMAO



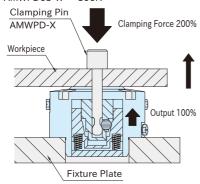
★Key Point -

High clamping force by wedge mechanism.

Body	Cylinder
S45C steel Induction hardened (top surface) Black oxide finished Precision ground	SCM440 steel ISONITE treated

PNEUMATIC CLAMPS PNEUMATIC CLAMPS

Part Number	d (F7)	D ₂	H (±0.01)	D	H ₁	D ₁ (g6)	H4	H ₂	Dp *)	М	Нз	Н₅
AMWPD40-W	8	40	40	75	38	50	15	30	63	M5×0.8	26	6
AMWPD63-W	12	63	50	105	47	75	19	35	88	Rc¹/8	31	10


Part Number	Furnished O-ring	Operating Air Pressure (MPa)	Clamping Force (kN) **)	Weight (kg)	
AMWPD40-W	D4	00.40	1	1.3	
AMWPD63-W	P4	0.3~1.0	2.5	3.2	

- *) The dimensions above are for ports with o-ring.
- **) The clamping forces above are at 0.5 MPa.

Feature

■High Clamping Force

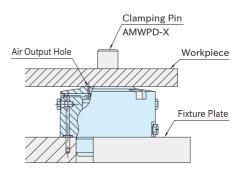
- ·Wedge mechanism increases clamping force to 200% compared to the air cylinder of the same size.
- · When the air pressure is lowered by such as an air leakage, wedge mechanism prevents prompt lowering of the clamping force. Clamping Force at 0 Mpa Air Pressure (by spring force)
 - ·AMWPD40-W···160N
 - ·AMWPD63-W···500N

Technical Information

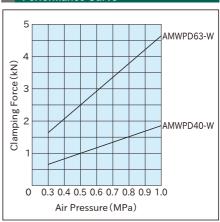
■ Allowable Counterforce (Per Clamp)

Part Number	Max. load(N)
AMWPD40-W	Olamania a fama a X O
AMWPD63-W	Clamping force × 2

Related Product


- · AMWPD-X CLAMPING PINS
- · AMWPD-M CLAMPING SCREWS

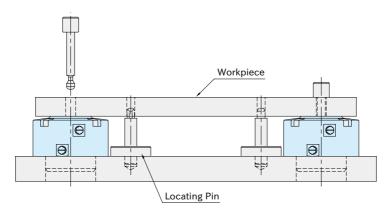
Note

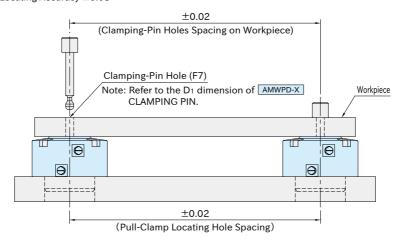

- ·Use clean air by removing dust with filter or draining with dryer.
- ·Impure compressed air may cause malfunction of the products.
- ·Using lubricator is recommended.

■Checking Hole

Can check if the workpiece is clamped properly by applying air through the checking hole.

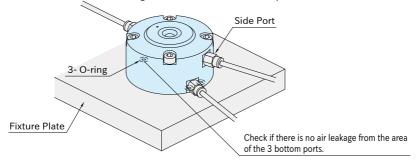
Performance Curve

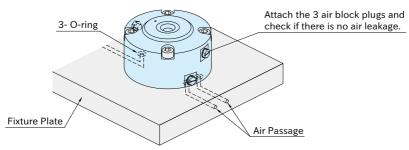

Continuing on Next Page

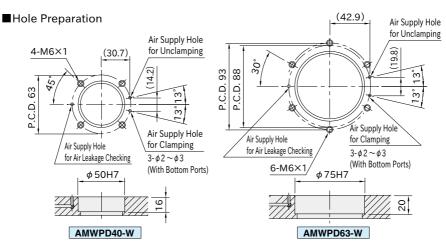

How To Use

■How to Locate Workpiece

1. Basic Method

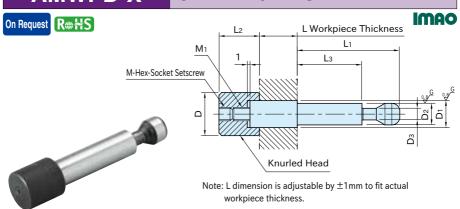

2. Method for clamping and locating at a time Locating Accuracy ± 0.08


■How to Install


- 1.With Side Ports
 - ·Attach the furnished o-rings to the bottom ports.
 - •Plate surface must be flat($\frac{6.3}{5}$)to get the bottom ports sealed up.
 - ·Check if there is no air leakage from the area of the bottom ports.

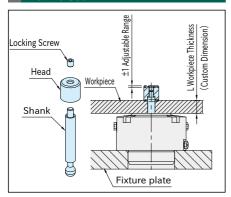
2.With Bottom Ports

- ·Attach the furnished o-rings to the bottom ports.
- •Plate surface must be flat (5.3) to get the bottom ports sealed up.
- ·Refer to the figure below for the hole details.
- •Ensure that the furnished air block plugs are attached to the side ports.



AMWPD-X

CLAMPING PINS


Shank	Head
SCM435 steel	S45C steel
Induction hardened (taper seat)	Quenched and tempered
Precision ground	Black oxide finish

Part Number	D ₂ (f7)	D ₁ (f7)	L*) (By 0.1mm)	D	L ₂	L ₁	L ₃	Dз	М
AMWPD40- 8-(L Dim. in mm) AMWPD40-10-(L Dim. in mm)	8	8 10	4≦L≦64	16	15	38	24	4.3	M5×0.8 -5L
AMWPD63-12-(L Dim. in mm) AMWPD63-16-(L Dim. in mm)	12	12 16	0 <l≦90< td=""><td>18 24</td><td>23</td><td>48</td><td>31.5</td><td>6.5</td><td>M8×1.25-8L</td></l≦90<>	18 24	23	48	31.5	6.5	M8×1.25-8L

Part Number	M 1	Proper Pull Clamps	Weight (g)			
AMWPD40- 8-(L Dim. in mm)	MEYOO	AMWPD40-W	min. 30~max. 60			
AMWPD40-10-(L Dim. in mm)	M5×0.8	AIVIVVPD40-VV	min. 31~max. 77			
AMWPD63-12-(L Dim. in mm)	M8×1.25	AMWPD63-W	min. 70~max.160			
AMWPD63-16-(L Dim. in mm)	IVI8 × 1.25	AIVIVVPD63-VV	min.175~max.265			

^{*)} For ordering, specify workpiece thickness.

How To Use

Note

The length of L dimension should be decided depending on the workpiece thickness.

■Ordering Example

AMWPD40-8 - 10.5

Shank Size

L Dim.

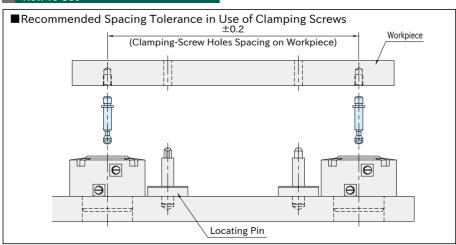
AMWPD40-8 for 10.5mm thickness workpiece.



AMWPD-M

CLAMPING SCREWS

IMAO R⊕#S



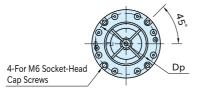
Body
SCM435 steel
Quenched and tempered
Black oxide finish

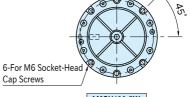
Part Number	D ₁	М	Lı	L	D	L ₂	Lз	D ₂	W	Proper Pull Clamps	Weight (g)
AMWPD40-M 8 AMWPD40-M10	8	M 8×1.25 M10×1.5	9 11	38	12	24	1.5	4.3	6	AMWPD40-W	16 20
AMWPD63-M12 AMWPD63-M16	12	M12×1.75 M16×2	13 17	48	20	31.5	2	6.5	10	AMWPD63-W	50 64

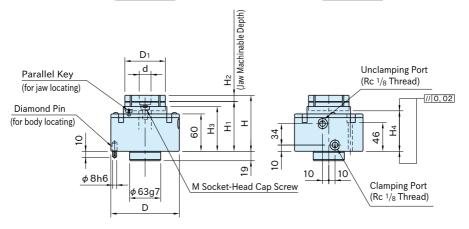
How To Use

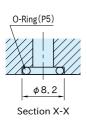
Note

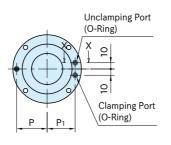
Cutom Clamping Screws (different screw thread sizes) are available on request.

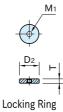

AMCH-W


PNEUMATIC OD HOLDING CLAMPS


Body	Jaw
S45C steel Electroless nickel plated	A7075 aluminum Anodized Blue






AMCH080-5W

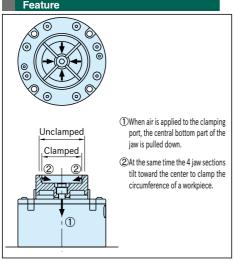
AMCH100-5W

Part Number	D ₁	d	Н	H ₂	D	H ₁	Нз	H ₄ (±0.02)	Dp	P (±0.02)	P ₁	М	M 1
AMCH080-5W	65	19	90	10	110	80	72	65	98	49	45	M 8×1.25-15L	M4×0.7
AMCH100-5W	90	23	100	15	130	85	74	66	118	59	55	M10×1.5 -20L	M5×0.8

Part Number	D ₂	Т	Furnished O-Ring	Operating Air Pressure(MPa) *)	Clamping Force (kN) **)	Weight (kg)	
AMCH080-5W	18	4	P5	0.5	4	4.2	
AMCH100-5W	22	6	Fo	0.5	6	6	

- *) Operating air pressure range: 0.45 0.55 MPa.
- **) The clamping forces above are at 0.5 MPa.

Supplied With


- ·1 of locking ring
- ·2 of O-Ring
- ·1 of diamond pin

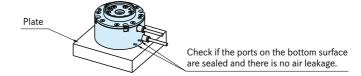
Technical Information

- ·Workpiece locating repeatability: ±0.03
- ·Jaw locating repeatability: ±0.02

Note

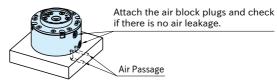
- •Do not actuate clamping without a workpiece inserted to avoid damage and deformation.
- ·Do not machine the jaw beyond the machinable area.
- ·Changeable Jaws CP121 are available.
- · Use clean air by removing dust with filter or draining with dryer.
- ·Impure compressed air may cause malfunction of the products.
- ·Using lubricator is recommended.

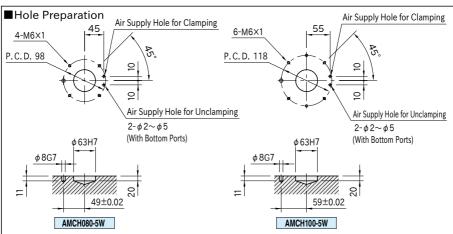
- The diaphragm clamping mechanism allows securely clamping a workpiece with 4 jaw sections.
- Different irregularly-shaped workpieces can be clamped.
- · 0.15mm clamping stroke of each jaw section is perfect for clamping of lost-wax parts, die-cast parts, extruded parts, solid-drawn parts, prefinished parts, etc.

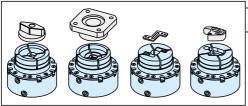


How To Use

■Body Installing

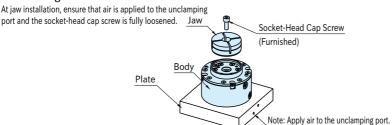

With Side Ports


- ·Attach the furnished o-rings to the bottom ports. ·Plate surface must be flat $(\frac{63}{7})$ to get the bottom ports sealed up.
- ·Check if there is no air leakage from the area of the bottom ports.



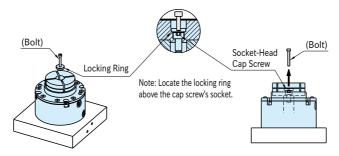
With Bottom Ports

- ·Attach the furnished o-rings to the bottom ports.
- •Plate surface must be flat $(\frac{6.3}{2})$ to get the bottom ports sealed up.
- Refer to the figure below for the hole positions for ports.
- ·Ensure that the furnished air block plugs are attached to the side ports.

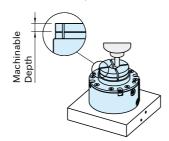

Changeable Jaws CP121 are available.

Machinable jaws allow clamping workpieces of various shapes.

Ideal way to hold workpieces for machining on smallsize machining centers, tapping centers, small-size 5-axis machines, CNC rotary tables, etc.

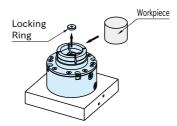


■Jaw Setting



■Jaw Machining

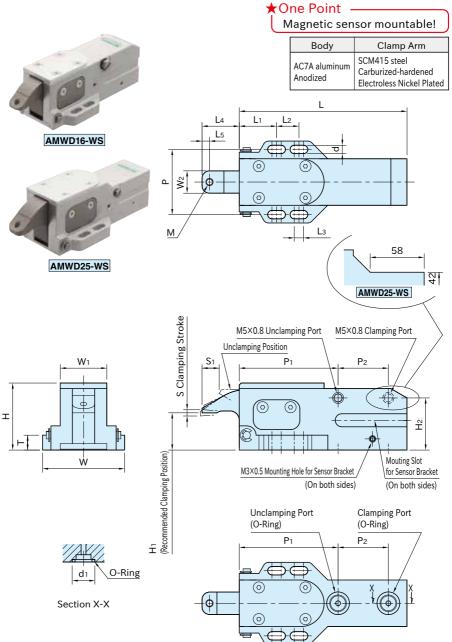
- 1. Set the locking ring in the jaw. (using a bolt facilitates setting)
- 2. Apply air to the clamping port to clamp the locking ring. (After clamping, remove the bolt from the locking ring.)



3. Machine the jaw to custom fit a workpiece.

■Workpiece Setting

- 1. After machining apply air to the unclamping port to take out the locking ring.
- 2. Mount a workpiece and then apply air to the clamping port for clamping.

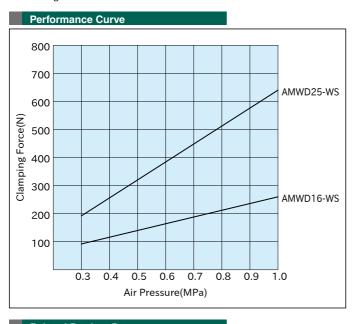


AMWD-WS

PNEUMATIC HOLD DOWN CLAMPS

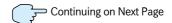
R##S IMAO

PNEUMATIC CLAMPS PNEUMATIC CLAMPS


Part Number	W ₂	L ₄	М	L ₅	Hı	S	S ₁	L	W ₁	Н	w	Т	d	L ₁	L ₂	Lз
AMWD16-WS	12	20	M4×0.7	4	20	2	9	90	25	36	44	8	4.5	20	12	5
AMWD25-WS	18	32	M6×1	6	30	3	15	135	40	54	65	12	6.5	30	20	8

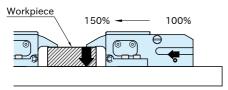
Part Number	Р	d ₁	P ₁	P ₂	H ₂	Operating Air Pressure (MPa)	Clamping Force (N) *)	Furnished O-Ring	Weight (g)
AMWD16-WS	35	12.2	53	27	28	00.40	140	P 9	250
AMWD25-WS	53	18	84	38	33	0.3 - 1.0	320	P14	850

Supplied With


*) The clamping forces above are at 0.5 MPa.

2 of O-Ring

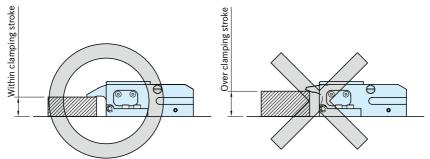
Related Product Page


AMWD-WS-B SENSOR BRACKETS

Feature

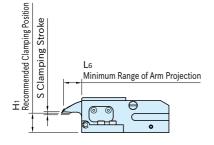
·Wedge mechanism provides 150% clamping force.

- •The allowable counterforce is shown in the chart below.
- ·Wedge mechanism prevents the clamping force from immediate decrease if air pressure lowers. Note: The clamping force may be decreased by excessive vibration.



Allowable Counterforce (Per Clamp)

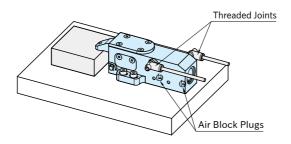
Part Number	Allowable Force (kN)
AMWD16-WS	1
AMWD25-WS	2.2


Note

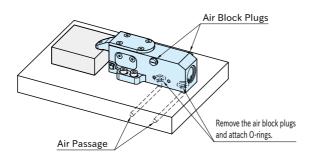
- · Use clean air by removing dust with filter or draining with dryer.
- · Impure compressed air may cause malfunction of the products.
- · Using lubricator is recommended.
- · Use the clamp within the clamping stroke.

The wedge mechanism works to clamp the workpiece securely.

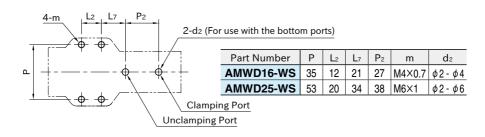
The wedge mechanism does not work.


Part Number	S	H ₁	L ₆
AMWD16-WS	2	20	19
AMWD25-WS	3	30	30.5

How To Use

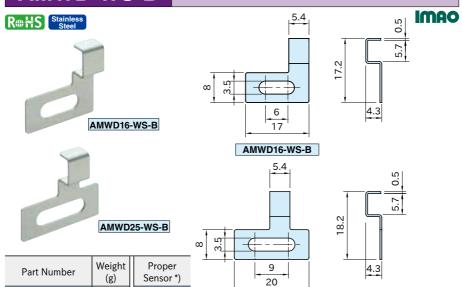

■With Side Ports

- •Ensure that the furnished air block plugs are attached to the bottom ports.
- ·Remove the air block plugs on the side ports and connect the piping.
- ·Refer to the figure below for the hole preparation.



■With Bottom Ports

- •Ensure that the furnished air block plugs are attached to the side ports.
- •Remove the air block plugs on the bottom ports and attach O-rings (included) to it.
- Plate surface must be flat $(\stackrel{6.3}{\nabla})$ to get the bottom ports sealed up.
- ·Refer to the figure below for the hole preparation.



■Hole Preparation

AMWD-WS-B SENSOR BRACKETS

*)Magnetic Proximity Sensors of ASA ELECTRONICS INDUSTRY CO., LTD. Please refer to their catalog for details of sensors.

AH006-S, N

Feature

AMWD16-WS-B

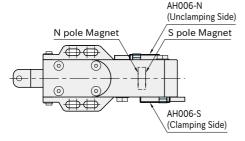
AMWD25-WS-B

- Using proper sensors enables to detect the piston positions.
- · Prepare the sensors as needed.(Not available from Imao.)

5.5

6

Supplied With


2 of M3x0.5-5L Hex socket button head screw

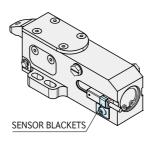
Related Product

AMWD-WS PNEUMATIC HOLD DOWN CLAMPS

How To Use

- ·Must be used with 1 pc. each of AH006-S (S pole) and AH006-N (N pole).
- ·Adjust the detecting positions by mounting sensors of S and N poles as shown below.

🖊 Note


AMWD25-WS-B

Only Magnetic Proximity Sensors AH-006 of ASA ELECTRONICS was tested with AMWD-WS PNEUMATIC HOLD DOWN CLAMPS.

Body

SUS304 stainless steel

- •Ensure to follow the criteria below before using other magnetic sensors.
 - Can be mounted in the 7mm slot of the clamp body.
 - Can detect the internal magnet of the clamp.
- Brackets should be made by the customer referring to the datasheet of AMWD-WS-B SENSOR BRACKETS.

