FROM DESIGN,
TO REALITY...

?why VIACLIMATE®

Objective

Our objective is to improve production processes and to become a leading brand in Turkey and in the World with VIACLIMATE.

R&D

We keep researching changing air conditioning requirements and designing our products according to technological advancements with the same ambition and enthusiasm we had on our first day.

Engineering

We utilize all the infrastructure and calculation methods required by engineering principles and standards for our products.

Customer Satisfaction

VIACLIMATE considers the fullfilment of all customer requirements as top priority to ensure customer satisfaction.

Design

We will continue providing you with unique products that are more affordable, more efficient and with less energy consumption.

Quality

We perform quality control, production, testing and design in accordance with the principles stipulated as per the standards issued by accredited international and Turkish organizations.

After Sales Service

We aim to provide unlimited support for after sales services required for the products starting from the installation process.

Our Quality Policy

Table of Contents

Air Handling Units	5-28
Hygienic Air Handling Unit	29-36
Heat-Pump Air Handling Unit	37-48
Pool Dehumidification Unit	49-64
Kitchen Exhaust and Air Handling Unit	65-74
Rooftop Packaged Air Conditioner	75-82
Ceiling Type Heat Recovery Units	83-94
Air Unit Heater	95-98
Shelter Ventilation System	99-102
Exhausted Units and Ventilator	103-108
Technical Service Trackina Chart	109

Made By

Reproduction, translation, storage or any processing of the information contained in this catalogue are subject to prior written consent by VIACLIMATE. Therefore, no information in this catalogue may be reproduced, published, copied, presented or transmitted without the written consent of VIACLIMATE. Neither this catalogue nor any parts thereof may be used in any other catalogue without approval.

All Rights Reserved ©

Air Handling Unit content

Why Viaclimate?
VKSTB Acc. to EN1886
VKSStandart Acc. to EN1886
Selection Program
Products Overview
VKSTB Selection Chart
VKSStandart Selection Chart
General Features
Components
Optional Components
Electrical Automation

5-28

After Sales Service

QUICK

Easy Installation

High Ener

Control

Compliance to Strandards

Why ViaClimate?

High Energy Efficiency

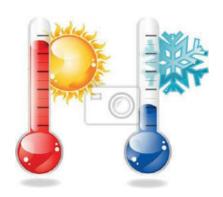
- Aims for maximum energy efficiency with case sections and the variety of the components used.
- Ensures high energy efficiency with optimum energy consumption.
- Air handling unit production meets the objectives and requirements of ERP2018
- Demonstrating their capability to prevent energy losses in Eurovent air leak, thermal conductivity and thermal transmittance tests, Viaclimate air handling units has certified its production of high-efficiency units.

Flexible Design

- With a wide product range and diversity, it meets customer requirements at the highest level.
- Provides easy and smart control services with automation systems that were designed according to customer needs.
- $\bullet\,$ Ensures easy installation with its modular and compact Case.
- Gives you the opportunity to select custom-made designs should you decide that the standard product range is not suitable for your project.

High-Quality Components

- Only raw materials that meet the specified standards with the approved quality are used during production.
- All materials used in our Products are in accordance with TSE, CE and EN standards.
- Aims to guarantee the quality of the final product that is delivered to the customer, with rigorous and careful preliminary quality control of raw materials and semi-finished products.



Why ViaClimate?

Optimal Air Conditioning

- Manufactures Products that are designed for outdoor climate conditions, capable of easily adapting to climate conditions in order to achieve a comfortable air level.
- Our Products ensure that the indoor air quality is at the optimum level with maximum efficiency.
- Aims to keep the comfort level at stable conditions with the help of correct designs.

Precision Manufacturing

- The Products are manufactured with high precision, using stateof-the-art machinery.
- Following the Kaizen culture, our objective is to achieve zero defects with continuous improvements.

R&D

- We always provide better solutions with the R&D studies carried out by our expert engineering staff.
- We always integCapacity developing and current technologies to our Products professionally, in order to meet your requirements.
- With R&D, in addition to product development, we are also developing new production designs.

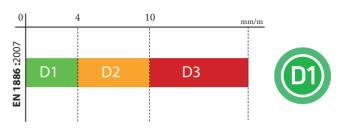
Quality Standards

- The performance values of our Viaclimate air handling units were measured during tests performed by TÜV laboratories according to EN1886, and certified according to Eurovent certification.
- Our entire product range will continue to guarantee compliance with quality standards and customer requirements.

VKSTB

Acc. to EN1886

Mechanical Strength Of Casing Deflection [D]


Test pressure: ±1000 Pa

Maks. bending 4mm → D1(M)

Maks. bending 10 mm → D2(M)

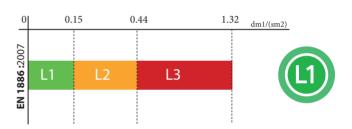
Maks. bending > 10 mm → D3 (M)

Viaclimate VKSTB air handling unit has succesfully passed the Mechanical Strength Of Casing Deflection test performed according to EN1886 standards to be included in D1 class

Case Air Leakage Class[L]

Test pressure: -400 Pa

Maks leakage Cap. 0.15 I/sm² → I.1(M)

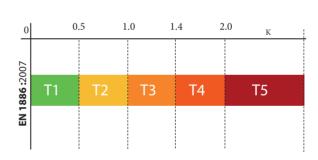

Test pressure: +700 Pa

Maks. leakage Cap. 0,15 l/sm² → L1(M)
Maks. leakage Cap. 0,44 l/sm² → L2(M)

Maks. leakage Cap. $0.22 \text{ l/sm}^2 \rightarrow \text{L1(M)}$ Maks. leakage Cap. $0.63 \text{ l/sm}^2 \rightarrow \text{L2(M)}$

Maks. leakage Cap. 0,44 (/siii → L2(M))
Maks. leakage Cap. 1,32 l/sm² → L3(M)
Maks. leakage Cap. 1,90 l/sm² → L3(M)

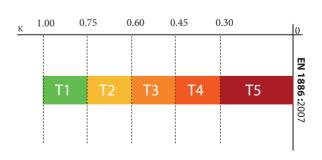
Viaclimate VKSTB air handling unit has succesfully passed the Case Air Leakage Class test performed according to EN1886 standards to be included in L1 class.



Thermal Transmittance [T]

Thermal transmittance $< 0.5 \rightarrow T1$ 0.5 < Thermal transmittance $<= 1 \rightarrow T2$ 1 < Thermal transmittance $<= 1.4 \rightarrow T3$ 1.4 < Thermal transmittance $<= 2 \rightarrow T4$

Viaclimate VKSTB air handling unit has succesfully passed the Case thermal transmittance test performed according to EN1886 standards to be included in T2 class.



Thermal Bridging of Casing Class [TB]

0.75 < Thermal Bridging < 1 \rightarrow TB1 0.6 < Thermal Bridging <= 0.75 \rightarrow TB2 0.45 < Thermal Bridging <= 0.6 \rightarrow TB3 0.3 < Thermal Bridging <= 0.45 \rightarrow TB4

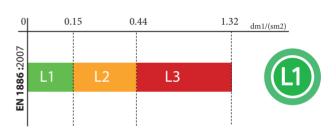
Viaclimate VKSTB air handling unit has succesfully passed the Case Thermal Bridging of Casing Class test performed according to EN1886 standards to be included in TB2 class.

VKSStandart Acc. to EN1886

Mechanical Strength Of Casing Deflection [D]

Test pressure: ±1000 Pa Maks. bending 4mm → D1(M) Maks. bending 10 mm \rightarrow D2(M) Maks. bending > 10 mm → D3 (M)

Viaclimate VKSTB air handling unit has succesfully passed the Mechanical Strength Of Casing Deflection test performed according to EN1886 standards to be included in D1

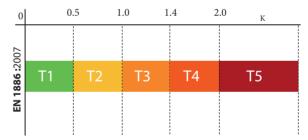


Case Air Leakage Class[L]

Test pressure: -400 Pa Test pressure: +700 Pa

Maks. leakage Cap. 0,15 l/sm² → L1(M) Maks. leakage Cap. 0,22 l/sm² → L1(M) Maks. leakage Cap. 0,44 l/sm² →L2(M) Maks. leakage Cap. 0,63 l/sm² → L2(M) Maks. leakage Cap. 1,32 l/sm² → L3(M) Maks. leakage Cap. 1,90 l/sm² → L3(M)

Viaclimate VKSTB air handling unit has succesfully passed the Case Air Leakage Class test performed according to EN1886 standards to be included in L1 class.



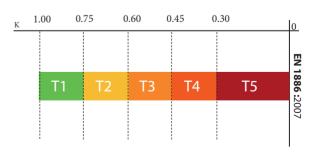
Thermal Transmittance [T]

Thermal transmittance < 0.5 → T1 0.5 < Thermal transmittance <= 1 → T2 1 < Thermal transmittance <= 1.4 → T3

1.4 <Thermal transmittance <=2 → T4

Viaclimate VKSTB air handling unit has succesfully passed the Case thermal transmittance test performed according to EN1886 standards to be included in T3 class.

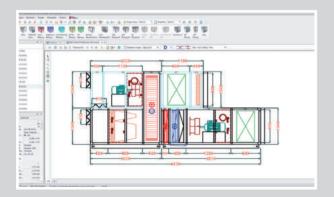
Thermal Bridging of Casing Class [TB]

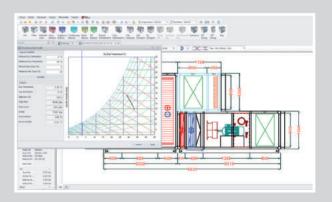

0.75 < Thermal Bridging < 1 → TB1

0.6 < Thermal Bridging <= 0.75 → TB2

0.45 < Thermal Bridging <= $0.6 \rightarrow TB3$

0.3 < Thermal Bridging <= 0.45 → TB4

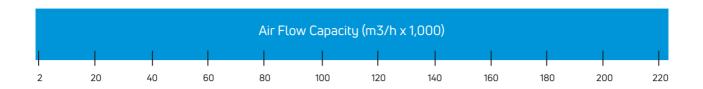

Viaclimate VKSTB air handling unit has succesfully passed the Case Thermal Bridging of Casing Class test performed according to EN1886 standards to be included in TB3 class.



ViaClimate AHU Selection

Selection Program

- Based on the Viaclimate AHU selection program which was developed with a customer focus, our VKSTB, VKSStandard air handling units are easily designed by our expert engineers according to your requirements.
- In compliance with ERP2016 and ERP2018.
- Technical reports can be geneCapacityd after you select the Products that are suitable to your requirements.
- Thanks to the transparency of the selection program, you can easily review and compare the technical specifications of the products you purchase.
- The dll's of the components that are in compliance with Eurovent, which is included in the infrastructure of the selection program, will opeCapacity according to the design of the Viaclimate air handling units.
- Provides technical details of the air handling units that were designed according to summer and winter conditions, such as temperature, humidity, efficiency, air flow Capacity, pressure loss etc.



Viaclimate AHU Selection provides;

hundreds of different Eurovent-certified air handling unit designs up to the range of +153 mm starting from the interior dimensions of 610x610 mm (height x width).

Product Overview

%100 Fresh Air Handling Unit

%100 Fresh Air Handling Unit with Heat Recovery

%100 Fresh Air Conditioner

Partial Fresh Air Handling Unit

Mixed Air Handling Unit

Mixed Air Handling Unit with Heat Recovery

VKSTBSelection Chart

	LIMATE VK		Air Flow Capacitys Based on Speed Classification Acc. to EN 13053 Standard (m3/h)						
АІГ	Handling U	init	V1	V2	V3	V4	V5	V6	
Model	Height	Width	1,6 (m/s)	1,8 (m/s)	2 (m/s)	2,2 (m/s)	2,5 (m/s)	3 (m/s)	
4 X 4	772	772	2157	2427	2697	2966	3371	4045	
4 X 5	772	925	2697	3034	3371	3708	4214	5056	
4 X 6	772	1078	3236	3641	4045	4450	5056	6068	
4 X 7	772	1231	3775	4247	4719	5191	5899	7079	
4 X 8	772	1384	4315	4854	5393	5933	6742	8090	
5 X 5	925	925	3371	3792	4214	4635	5267	6320	
5 X 6	925	1078	4045	4551	5056	5562	6320	7585	
5 X 7	925	1231	4719	5309	5899	6489	7374	8849	
5 X 8	925	1384	5393	6068	6742	7416	8427	10113	
5 X 9	925	1537	6068	6826	7585	8343	9481	11377	
5 X 10	925	1690	6742	7585	8427	9270	10534	12641	
	>	·		 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Minimum height - width: 772mm - 772mm Step height - width: 153mm - 153mm

Maximum height - width: 3220mm - 6280mm

Minimum air flow Capacity: 2157 m3/h Maximum air flow Capacity: 202254 m3/h VKSTB model sections: 629 pcs.

	>		1				· •	· · · · · · · · · · · · · · · · · · ·
20 X 31	3220	4903	83598	94048	104498	114948	130622	156747
20 X 32	3220	5056	86295	97082	107869	118656	134836	161803
20 X 33	3220	5209	88992	100116	111240	122364	139049	166859
20 X 34	3220	5362	91688	103149	114610	126072	143263	171916
20 X 35	3220	5515	94385	106183	117981	129779	147477	176972
20 X 36	3220	5668	97082	109217	121352	133487	151690	182028
20 X 37	3220	5821	99779	112251	124723	137195	155904	187085
20 X 38	3220	5974	102475	115285	128094	140903	160118	192141
20 X 39	3220	6127	105172	118318	131465	144611	164331	197197
20 X 40	3220	6280	107869	121352	134836	148319	168545	202254

The data on the Viaclimate VKSTB Air Handling Unit Chart only shows a few of the values from our selection chart. You can contact us for further information.

VKSStandart Selection Chart

	IATE VKSS		(1113/11)					3 Standard
AIF	Handling U	init	V1	V2	V3	V4	V5	V6
Model	Height	Width	1,6 (m/s)	1,8 (m/s)	2 (m/s)	2,2 (m/s)	2,5 (m/s)	3 (m/s)
4 X 4	732	732	2157	2427	2697	2966	3371	4045
4 X 5	732	885	2697	3034	3371	3708	4214	5056
4 X 6	732	1038	3236	3641	4045	4450	5056	6068
4 X 7	732	1191	3775	4247	4719	5191	5899	7079
4 X 8	732	1344	4315	4854	5393	5933	6742	8090
5 X 5	885	885	3371	3792	4214	4635	5267	6320
5 X 6	885	1038	4045	4551	5056	5562	6320	7585
5 X 7	885	1191	4719	5309	5899	6489	7374	8849
5 X 8	885	1344	5393	6068	6742	7416	8427	10113
5 X 9	885	1497	6068	6826	7585	8343	9481	11377
5 X 10	885	1650	6742	7585	8427	9270	10534	12641
		>				 - - 		\ \

Minimum height - width: 732mm - 732mm Step height - width: 153mm - 153mm Maximum height - width: 3180mm - 6240mm

Minimum air flow Capacity: 2157 m3/h Maximum air flow Capacity: 202254 m3/h VKSStandard model sections: 629 pcs.

			<u>.</u>	>		· · · · · · · · · · · · · · · · · · ·	- + *	· · · · · · · · · · · · · · · · · · ·
20 X 31	3180	4863	83598	94048	104498	114948	130622	156747
20 X 32	3180	5016	86295	97082	107869	118656	134836	161803
20 X 33	3180	5169	88992	100116	111240	122364	139049	166859
20 X 34	3180	5322	91688	103149	114610	126072	143263	171916
20 X 35	3180	5475	94385	106183	117981	129779	147477	176972
20 X 36	3180	5628	97082	109217	121352	133487	151690	182028
20 X 37	3180	5781	99779	112251	124723	137195	155904	187085
20 X 38	3180	5934	102475	115285	128094	140903	160118	192141
20 X 39	3180	6087	105172	118318	131465	144611	164331	197197
20 X 40	3180	6240	107869	121352	134836	148319	168545	202254

The data on the Viaclimate VKSStandard Air Handling Unit Chart only shows a few of the values from our selection chart. You can contact us for further information.

VKSTB General Features

VKSTB General Features

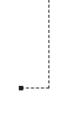
VKSStandart General Features

Standard Accessories

- Emergency Stop
- Air Damper
- Negative Pressure Trap
- Drift Eliminator
- .

Case Structure

- Designed according to EN1886 standards.
- Double-walled, sound-insulated units.
- 60mm panel thickness,
- 90 kg/m3 A1 class rock wool.
- Aluminum Case with heat bridge.
- Straight case design


Filter

- G2 G4 Panel
- M5 F9 Bag
- M5 F9 Compact
- H10 14 Hepa
- Panel Carbon
- Cartridge Carbon

Other Components

- Muffler
- Empty Case
- Mixed Air Damper
- Diffuser

Humidifiers

- Steam Humidifier
- Water Humidifier
- Evaporative

VKSStandart General Features

Opsional Accessories

- Thermal Pacco Switch
- Internal Lighting
- Door Switch
- Roof Sheet
- MCC, DDC Control Panel
-

Fan

- EC
- Plug
- EC Radial
- Double InletDouble Inlet(Back Sloping)
- Ex-proof

Heat Exchanger

- Water Heater
- Water Cooler
- Powered
- Gas-filled (DX)
- Steam-filled
- Natural gas-filled

Heat Recovery

- Aluminum Plated (Optional By-pass)
- Heat-Pipe
- Rotary (Enthalpy, Condensing, Absorption)
- Double Battery

EC Fan Mechanism

- Systems to which high-efficiency directly coupled fan and EC motor are connected.
- EC motors of IE4 and higher energy classes are used.
- The motor group can be controlled with 0-10V signal.
- Capable of operating with a lower noise level on high pressures.

Plug Fan Mechanism

- Systems that are comprised of a freely opeCapacityd, back sloping, highperformance, directly coupled fan, a motor and a motor shaft.
- AC motors of IE2 or IE3 energy classes are used.
- Capable of performing precise flow-pressure control with the help of a frequency inverter.

Belt-and-Pulley Drive Mechanism

- Systems where a double suction radial fan and a motor is installed on a chassis, and the motor power is transmitted to the fan with the help of a V-belt.
- 380V 50Hz motors of IE2 or IE3 energy classes are used.
- Manufactured with forward sloping thick-bladed or back sloping thin-bladed fans.

Ex-proof Mechanism

- Systems where an ATEX-certified double suction radial fan and a motor is installed on a chassis, and the motor power is transmitted to the fan with the help of a V-belt, in ventilation systems that are suitable for use in explosive environments
- Manufactured with forward sloping thick-bladed or back sloping thin-bladed fans with ex-proof feature.
- Non-sparking 380V 50Hz motors of IE2 or IE3 protection classes are used.

Water Cooler Heat Exchanger

- Components that ensure heat transfer from water to air with the movement of cold water running inside the coil.
- Designed for (6°C-10°C), (7°C- 12°C) or other conditions according to water regime.
- Used with a drift eliminator as standard.
- Used with a double sloped insulated condensate tray made of stainless sheet as standard.

Water Heater Heat Exchanger

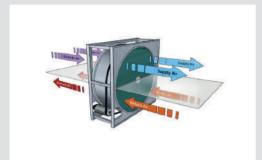
- Components that ensure heat transfer from water to air with the movement of hot water running inside the coil.
- Designed for (90°C-70°C), (80°C-60°C), (70°C-50°C), (60°C-40°C) or other conditions according to water regime.

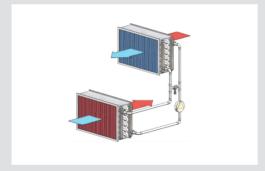
Gas Heat Exchanger (Dx)

- Used for air cooling applications with condensing units (external unit).
- External unit is designed according to the pipe inlet and outlet diameters.
- Number of inlets and outlets are increased for more than one VRF external unit.
- Used with a drift eliminator as standard.
- Used with a double sloped insulated condensate tray made of stainless sheet as standard.

Natural Gas Heat Exchanger

- Components that ensure heat transfer by running air through the heating energy geneCapacityd by the natural gas-fired unit.
- ON/OFF, gradual or proportional atmospheric burners are used.
- Heat exchanger part is made of aluminum material with high thermal conductivity factor.
- Contains a high-efficiency atmospheric burner and an ignitable unit with aluminum piping.
- Burners and equipment used by Viaclimate are CE certified.




Electric Heater

- Heating equipment where the electrical energy is transmitted to air via heating coils.
- 380V and electric arcs with equal phase distributions come as standard.
- Manufactured according to the required capacity and number of steps.
- Comes standard with a mechanical safety thermostat.

Aluminum-Plated Heat Recovery

- Systems where the thermal energy in the return air is transferred to the air blowing energy without requiring power.
- Comes standard with a condensate tray on the exhaust air outlet.
- Does not have any moving parts and practically does not require any maintenance
- Has an energy efficiency of approximately up to 70%.

Rotary Heat Recovery

- Used for the purpose of recovering thermal energy in the return air thanks to the material equipped on the Product.
- Has an energy efficiency of approximately up to 80%.
- Comes in 4 different types: heat, cooling, humidity transfer, drying.

Water Type (Run Around) Heat Recovery

- Components that carry out the heat transfer between air and the internal fluid (water).
- Has an energy efficiency of approximately up to 60%.

Heat-Pipe Heat Recovery

- Systems that are capable of transferring the heat that is geneCapacityd by evaporation through long distances with minimal temperature difference.
- Has an energy efficiency of approximately up to 65%.

Steam Humidifier

used as standard.

• Used for the purpose of achieving the suitable humidity levels in the environment to be conditioned.

• Systems that ensure that the water in the cylinder vaporizes and reaches the air handling unit with the help of a nozzle, in order to geneCapacity steam

• A double-pitched, insulated condensate tray that is made of stainless sheet is

without pressure with electrodes that receive electrical current.

- Ensures a high humidification Capacity.
- These are hygienic systems where return water is not used.
- A double-pitched, insulated condensate tray that is made of stainless sheet is used as standard.

Evaporative Humidifier

- With air running through wetted water pads and evaporating the water, air humidity is increased.
- Stainless steel Case.
- Antibacterial caseulosic water pads.
- Automatad water refilling system.
- A double-pitched, insulated condensate tray that is made of stainless sheet is used as standard.

Mixture Damper

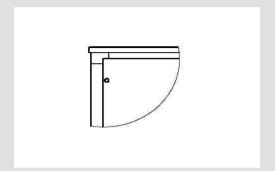
- Component that ensures that exhausted air and fresh air are mixed at the desired ratio.
- Lower air quality compared to systems with heat recovery.
- Ensures thermodynamic heat recovery in air handling units.
- Achieves the required air mixing ratio mechanically or through optional damper motors that have proportional control.

Preliminary and Intermediate Filtration

- Fiber-based materials located at the fresh air inlets of the Products, that hold thick particles in the air that is released to the environment.(G2 - G4 Filter)
- Intermediate filter is a compact type that utilizes filter bags after the preliminary filtering. (M5-F7 Filter)

Final Filtration

- Bag type, compact or rigid filters that hold the finest particles and that are used for hygienic type air handling units.
- Usually, F9 filter is used for air handling units, while H13-H14 class filters are used in the environments.


Muffler

- Sound absorbing casettes that are designed to minimize the air noise geneCapacityd by the moving parts of the unit, in order to maintain comfort.
- Rock wool with fiberglass is used as a sound absorbing material.
- The standard product is demountable.
- Special fabrics are used on the muffler surfaces so that the sound absorbing product does not get deformed.

Emergency Stop

• Equipment that stops and shuts the system down in unexpected emergencies.

Optional Components

Roof Sheet

- Mounted on the top panel in order to protect the Products from adverse weather conditions.
- Made from galvanized electrostatic powder painted metal sheets.

Hood

- Placed on the fresh air inlet and exhaust air outlet in air handling units to be opeCapacityd outdoors, in order to protect the Product from the negative effects of snow and rainwater.
- Made from galvanized electrostatic powder painted metal sheets.

Door Switch

- · Located inside the inspection hatches of the Products.
- Component that stops any moving parts and turns the internal lighting on during any intervention.

Lighting

- Helps with visibility for a better intervention to the internal parts of the Product.
- Located on the air handling unit with an ON/OFF switch.

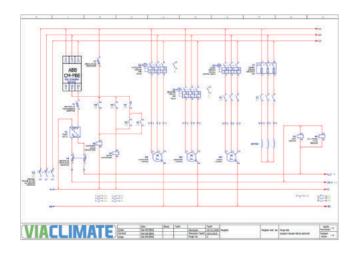
Automation Equipment

- Components that are used to manage the electrical and automation control of the Product.
- See page 28 for further information.

Flow Chart

Viaclimate receives your valuable orders.

After an information exchange between the electrical automation division and the sales & marketing division, the working scenarios of your Products are determined.



The unique PLC and field equipment for the Product are selected.

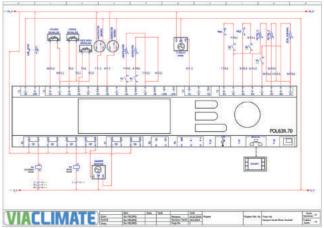
The project for the MCC and DCC panels are drawn on E Plan according to the designed scenario.

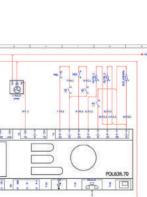
The software for the scenario that is unique to the Product is created, and uploaded to the control card (PLC).

Flow Chart

After the testing procedure is completed, the Products are ready for shipment.

Electrical and automation testing for the capacity, leakage, mode change, withdrawn power, insulation, Lvd, IEC for the Products are completed within one to three days.

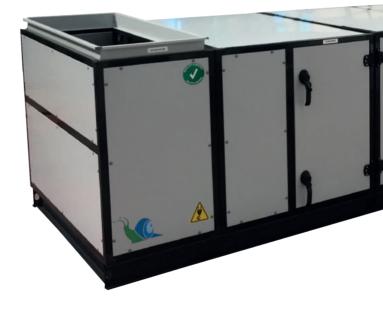

The testing procedure for the manufactured Product begins.


Cabling for the field equipment, motor and communication is performed in parallel with mechanical production.

The panel production is completed by the expert Viaclimate Electrical Automation team.

Checkpoints

Analog Inputs


- Temperature sensor
- Humidity sensor
- Pressure sensor
- Frost protection temperature sensor

Analog Outputs

- Valve motor
- Motor frequency
- Damper motor
- Humidifier

Digital Inputs

- Differential pressure switch
- Frost thermostat
- Temperature thermostat

Digital Outputs

- Electric heater step
- Fan start stop
- Damper motor
- Valve motor

Checkpoints

Alarms

- Motor thermal failure
- Belt broken
- Filter contamination
- Frost
- Electric heater failure

Checkpoints

- Room thermostat
- Return air
- Fresh air
- Touch screen
- ModBus (RS485)
- BACnet

Other Points

- Time programming
- Summer, winter, mid-season mode change
- VRF external unit integration
- Feed water temperature
- Freecooling, freeheating
- Lighting

Safety Points

- Emergency stop
- Safety thermostat
- By-pass damper
- Rotary speed
- Heat recovery fluid velocity (water type)
- Temperature thermostat
- Motor protection
- Door switch

Components

MCC Panel Control

- Fixed frequency (With contactor)
- Variable frequency (With frequency inverter)
- Pacco switch
- Warning lights
- Switchgear

DDC Panel Control

- Temperature sensor
- Differential pressure switch
- Differential pressure sensor
- Air quality sensor
- Humidity sensor
- Three or two-way valve motor
- Damper motor
- Frost thermostat
- Frequency inverter
- Emergency Stop
- Frost temperature sensor
- · Room thermostat
- Touch screen

Brands of electrical automation equipment may differ from the project and specifications.

Hygienic Air Handling Unit content

Why Viaclimate? HijyenV Acc. to EN1886 Selection Program **Products Overview** HijyenV Selection Chart General Features Components **Electrical Automation**

29-36

Quick Service

High Energy Efficiency

Hygiene

Compliance to Standards

Compliance to Standards

Compliance to Standards

Why ViaClimate?

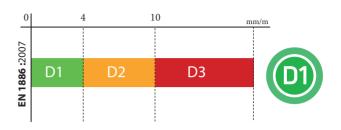
High Energy Efficiency

- Air handling unit production meets the objectives and requirements of ERP2018.
- · Low energy consuming, high-pressure mechanism design
- Minimum leak proof panel Case design

Excellent Hygiene

- Oval hygienic design in the case
- Materials in accordance with ISO846
- Class4 leak proof dampers
- Special opening seals
- Copper collector heat exchangers
- Detachable mufflers covered with special fabric
- Demountable panel design
- F9 tightness class filter
- Double-suction condensate tray
- Stainless metal sheet interior
- Antibacterial silicon

Quality Standards

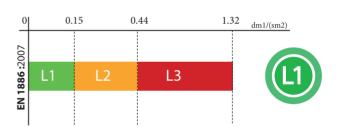

- The performance values of our Viaclimate air handling units were measured during tests performed by TÜV laboratories according to EN1886, and certified according to Eurovent certification.
- Hygienic Air Handling Units are in accordance with VDI 6022, DIN 1946-4, VDI 3803 and EN 13053 standards.
- Our entire product range will continue to guarantee compliance with quality standards and customer requirements.

HijyenV Acc. to EN1886

Mechanical Strength Of Casing Deflection [D]

Test pressure: ±1000 Pa Maks. bending 4mm → D1(M) Maks. bending 10 mm \rightarrow D2(M) Maks. bending > 10 mm → D3 (M)

Viaclimate VKSTB air handling unit has succesfully passed the Mechanical Strength Of Casing Deflection test performed according to EN1886 standards to be included in

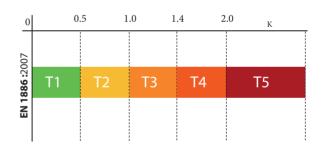


Case Air Leakage Class[L]

Test pressure: -400 Pa Test pressure: +700 Pa

Maks. leakage Cap. 0,15 l/sm² → L1(M) Maks. leakage Cap. 0,22 l/sm² → L1(M) Maks. leakage Cap. 0,44 l/sm² →L2(M) Maks. leakage Cap. 0,63 l/sm² → L2(M) Maks. leakage Cap. 1,32 l/sm² → L3(M) Maks. leakage Cap. 1,90 l/sm² → L3(M)

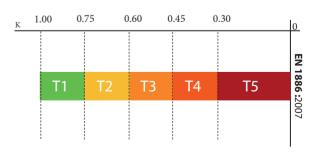
Viaclimate VKSTB air handling unit has succesfully passed the Case Air Leakage Class test performed according to EN1886 standards to be included in L1 class.


Thermal Transmittance [T]

Thermal transmittance < 0.5 → T1 0.5 < Thermal transmittance <= 1 → T2 1 < Thermal transmittance <= 1.4 → T3

1.4 <Thermal transmittance <=2 → T4

Viaclimate VKSTB air handling unit has succesfully passed the Case thermal transmittance test performed according to EN1886 standards to be included in T2 class



Thermal Bridging of Casing Class [TB]

0.75 < Thermal Bridging < 1 → TB1 0.6 < Thermal Bridging <= 0.75 → TB2 0.45 < Thermal Bridging <= $0.6 \rightarrow TB3$

0.3 < Thermal Bridging <= 0.45 → TB4

Viaclimate VKSTB air handling unit has succesfully passed the Case Thermal Bridging of Casing Class test performed according to EN1886 standards to be included in TB2 class.

ViaClimate AHU Selection

Selection Program

- Based on the Viaclimate AHU selection program which was developed with a customer focus, our VKSTB, VKSStandard air handling units are easily designed by our expert engineers according to your requirements.
- In compliance with ERP2016 and ERP2018.
- Provides technical details of the air handling units that were designed according to summer and winter conditions, such as temperature, humidity, efficiency, air volume, pressure loss etc.
- Selection program enables the placement of cleaning hatches that are in accordance with Hygiene standards.
- Selection program allows the design of a detachable muffler and drift eliminator.
- Internal equipment support is provided in accordance with hygiene standards (epoxy coating, copper collector etc.).

Product Overview

HijyenVSelection Chart

	LIMATE Hijų		Air Flow Capacitys Based on Speed Classification Acc. to EN 13053 Standard (m3/h)						
АІГ	Handling U	nit	V1	V2	V3	V4	V5	V6	
Model	Height	Width	1,6 (m/s)	1,8 (m/s)	2 (m/s)	2,2 (m/s)	2,5 (m/s)	3 (m/s)	
4 X 4	772	772	2157	2427	2697	2966	3371	4045	
4 X 5	772	925	2697	3034	3371	3708	4214	5056	
4 X 6	772	1078	3236	3641	4045	4450	5056	6068	
4 X 7	772	1231	3775	4247	4719	5191	5899	7079	
4 X 8	772	1384	4315	4854	5393	5933	6742	8090	
5 X 5	925	925	3371	3792	4214	4635	5267	6320	
5 X 6	925	1078	4045	4551	5056	5562	6320	7585	
5 X 7	925	1231	4719	5309	5899	6489	7374	8849	
5 X 8	925	1384	5393	6068	6742	7416	8427	10113	
5 X 9	925	1537	6068	6826	7585	8343	9481	11377	
5 X 10	925	1690	6742	7585	8427	9270	10534	12641	
	- - - - -			1 1 1 1 1 1 1 1 1			 		

Minimum height - width: 772mm - 772mm Step height - width: 153mm - 153mm

Maximum height - width: 3220mm - 6280mm

Minimum air flow Capacity:2157 m3/h Maximum air flow Capacity:202254 m3/h VKSTB model sections: 629 pcs.

· · · · · · · · · · · · · · · · · · ·				>		· · · · · · · · · · · · · · · · · · ·	1 1 •	
20 X 31	3220	4903	83598	94048	104498	114948	130622	156747
20 X 32	3220	5056	86295	97082	107869	118656	134836	161803
20 X 33	3220	5209	88992	100116	111240	122364	139049	166859
20 X 34	3220	5362	91688	103149	114610	126072	143263	171916
20 X 35	3220	5515	94385	106183	117981	129779	147477	176972
20 X 36	3220	5668	97082	109217	121352	133487	151690	182028
20 X 37	3220	5821	99779	112251	124723	137195	155904	187085
20 X 38	3220	5974	102475	115285	128094	140903	160118	192141
20 X 39	3220	6127	105172	118318	131465	144611	164331	197197
20 X 40	3220	6280	107869	121352	134836	148319	168545	202254

The data on the Viaclimate VKSTB Hygienic Air Handling Unit Chart only shows a few of the values from our selection chart. You can contact us for further information.

HijyenV

Subjective Features

Moving Mechanism

- Ensures air circulation for hygienic areas.
- Used in accordance with hygiene standards.

Filter

- Holds the particles in the fresh air required for hygienic areas.
- Usually used in conjunction with preliminary filtration and final filtration.
- Easily detachable. Easy-to-clean case and easy installation.

Humidifier

- Meets the humidity requirements of hygienic areas.
- Generally, steam type humidifiers are used.
- A nozzle and a condensate tray that are made of stainless metal sheet are used as standard.


Heat Exchanger

- Components that help the air conditioning of hygienic areas.
- A stainless sheet Case, epoxy coating and a copper collector are used.
- Easily detachable. Easy-to-clean case and easy installation.

HijyenVSubjective Features

maintain comfort in hygienic environments.

Muffler

Drift EliminatorUsed in all air handling units that feature cooling or humidification as

· Rock wool with fiberglass is used as a sound absorbing material.

Easily accessible for cleaning the case and the chambers.
Chamber Case is made of 304 grade stainless steel sheet.

• Drift eliminators made of raw materials in accordance with ISO 846 are used in Hygienic Air Handling Units.

• Sound absorbing casettes that are designed to minimize the air noise in order to

Special antibacterial fabrics are used to protect muffler chambers against contact

- Drift eliminator is installed as a slide-in component for easy cleaning (easy access)
- Drift eliminator Case is made of 304 grade stainless steel sheet.

Condensate Tray

- Used in all air handling units that feature cooling or humidification as standard.
- Easily accessible and easy to clean in Hygienic Air Handling Units.
- · Insulated and double-pitched as standard.
- Condensate tray is made of 304 grade stainless steel sheet.

Lighting

- In consideration of the 24/7 operation of Hygienic Air Handling Units, it provides the lighting for interventions to be made in dark environments or times of day.
- Equipment are in suitable for Hygienic Air Handling Units.
- Comes mounted on the unit as standard.

Refer to the Air Handling Unit section "components" (page 18-23) for further information regarding Hygienic Air Handling Unit components.

MCC Panel Control

- Fixed frequency (With contactor)
- Variable frequency (With frequency inverter)
- Pacco switch
- Warning lights
- Switchgear

DDC Panel Control

- Temperature sensor
- Differential pressure switch
- Differential-Pressure sensor
- Air quality sensor
- Humidity sensor
- Three or two-way valve motor
- Damper motor
- Frost thermostat
- Frequency inverter
- Emergency Stop
- Frost temperature sensor
- Room thermostat
- Touch screen

Brands of electrical automation equipment may differ from the project and specifications. See pages 24 - 27 for the electrical automation process.

Heat-Pump Air Handling Unit content

Why Viaclimate?
Products Overview
General Features
Selection Chart
Rotary Heat-Pump Scenarios
Mixed Air Heat-Pump Scenarios
Electrical Automation

37-48

2 Year Warrantu

After Sales Service

QUICK

Easy Installation

High Energy Efficiency

Control

Compliance to Standards

Rotary

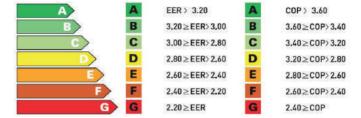
Scroll Compressor

Cooling Fluid

Heat-Pump

Smart

Termoynan


Plug and Play

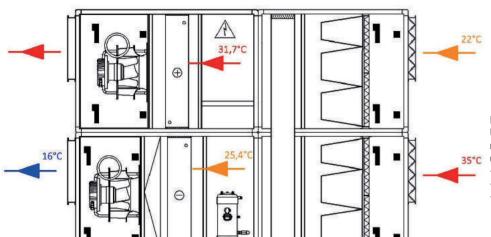
Why ViaClimate?

High Energy Efficiency

- High efficiency heat recovery exchanger with Rotary
- Compressors with minimum energy consumption
- Energy-efficient moving parts with EC fan
- Automatic free cooling operation

Optimal Air Conditioning Modes

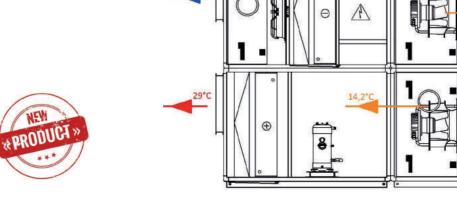
- Cooling mode
- Heat- pump (Heating) mode
- Ventilation mode
- Heat recovery mode
- Sleep mode
- Moisture transfer


Smart Defrost Mode

- Hot gas by-pass
- Thermodynamic Heat Recovery
- Optional heater circuit
- Optional defrosting electric heater circuit

Why ViaClimate?

Excellent Design

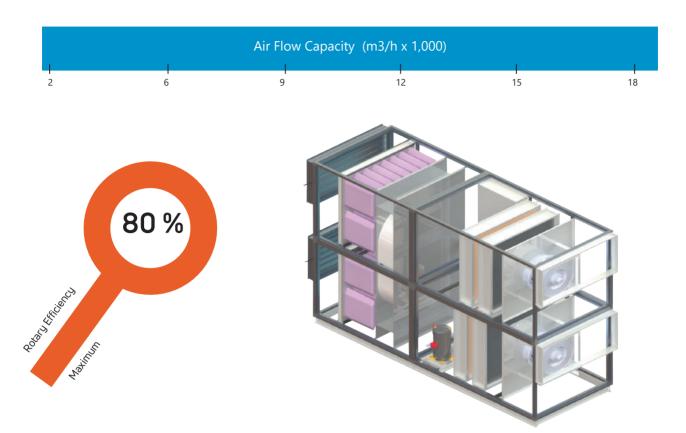


Heat-Pump Rotary Heat Recovery Air Handling Unit was designed by VIACLIMATE in order to meet your heating, cooling, ventilation demands under summer and winter conditions with;

- High performance
- Low energy consumption
- 100 % fresh air

Heat-Pump Mixed Air Heat Recovery Air Handling Unit was designed by VIACLIMATE in order to meet your heating, cooling, ventilation demands under summer and winter conditions with;

- High performance
- Low energy consumption
- Partial fresh air



22°C

-12°C

Products Overview

Product Name : VIACLIMATE Rotary Heat-Pump Air Handling Unit Product Code: VIARHP

Product Name : VIACLIMATE Mixed Air Heat-Pump Air Handling Unit Product Code: VIAKHP

 $\label{lem:condition} \mbox{Air flow Capacity chart is intended for visual and informative purposes.}$

Heat-Pump Air Handling Unit

Selection Chart

VI/ Rotary Heat-P	ACLIMATE ump Air Ha	ndling Unit	RHPVIA7	RHPVIA10	RHPVIA16	RHPVIA20	RHPVIA32	RHPVIA34	RHPVIA40
Blowing Temperature *	SUMMER °C	16.1	15.92	16.24	16.05	15.78	17.24	16.1	
Blowing rempera	iture "	WINTER °C	33.8	34.02	34.12	33.85	34	33.12	33.8
Minimum Air Flov	w Capacity	m³/h	2000	4000	7000	9000	11000	13000	16000
Nominal Air Flow	Capacity	m³/h	3000	5000	8000	10000	12000	15000	18000
Exterior Static Pr	essure	Pa	300	300	300	300	350	350	350
Cooling Capacity	**	kW	38.69	64.4	104.41	123,42	164.72	192.72	241.6
Heat-Pump Heating	Capacity***	kW	40.32	65	105.57	141.1	208.7	245.62	306.13
Water Heater Cap	oacity****	kW	15.68	26.13	41.8	52.26	62.71	78.39	94.07
EER			3.50	4.21	4.93	5.79	4.79	4.40	4.79
СОР			3.65	4.25	4.98	5.74	6.07	5.61	6.07
Motor Power		kW	5.8	7.8	9.2	9.6	10.4	19.8	20.4
Compressor Pow	ег	kW	5.25	7.5	12	15	24	24	30
Total Product Po	wer	kW	13.05	17.3	23.2	26.6	36.4	45.8	52.4
Product Power In	Product Power Input V/Ph/Hz					400/3/50			
	Height	mm	1664	1664	1970	1970	2276	2276	2582
Product Exter- nal Dimensions	Depth	mm	1078	1384	1537	1843	1996	2302	2302
	Length	mm	3620	3620	3680	4180	4180	4240	4280

^{*} The blowing temperature calculation does not include any external heater or cooler heat exchanger capacity under external design conditions.

Prefer smart defrost mode options in order to eliminate the effects of frost conditions (below -5 °C).

The defrosting period is between 2-8 min/h thanks to the smart defrost mode.

	ACLIMATE Mi Pump Air Han		KHPVIA7	KHPVIA10	KHPVIA16	KHPVIA20	KHPVIA32	KHPVIA34	KHPVIA40
Diamina Toma		SUMMER ℃	16	16.2	16.5	16.6	16.8	17.1	16.5
Blowing Temp	Derature "	WINTER ℃	30.1	29.8	29.5	29	29.1	27.8	28.9
Minimum Air	Flow Capacity	m³/h	2000	4000	7000	9000	11000	13000	16000
Nominal Air F	low Capacity	m³/h	3000	5000	8000	10000	12000	15000	18000
Exterior Station	c Pressure	Pa	300	300	300	300	350	350	350
Cooling Capa	city **	kW	39.13	65.32	104.41	130.65	156.54	192.15	235.36
Heat-Pump Hea	iting Capacity***	kW	38.4	63.46	105.57	126.9	153.61	186.08	228.78
Water Heater	Capacity****	kW	42.21	70.35	112.56	140.7	168.84	211.05	252.26
EER			3.54	4.27	4.93	5.31	4.55	4.39	4.67
СОР			3.48	4.15	4.98	5.16	4.47	4.25	4.54
Motor Power		kW	5.8	7.8	9.2	9.6	10.4	19.8	20.4
Compressor F	Power	kW	5.25	7.5	12	15	24	24	30
Total Product	Power	kW	12.05	16.3	22.2	25.6	35.4	44.8	51.4
Product Power	er Input	V/Ph/Hz	400/3/50						
Product	Height	mm	892	892	1045	1045	1198	1198	1351
External	Depth	mm	1078	1384	1537	1843	1996	2302	2302
Dimensions	Length	mm	3820	3820	3880	4480	4480	4540	4580

^{*}The blowing temperature calculation does not include any external heater or cooler heat exchanger capacity under external design conditions.

Prefer smart defrost mode options in order to eliminate the effects of frost conditions (below -12 °C).

The defrosting period is between 2-12 min/h thanks to the smart defrost mode.

Fresh air ratio is 40%.

^{**}Cooling capacity calculation is based on reference values of external air: 35 °C, 50% RH.

^{***}Heat-Pump heating capacity calculation is based on reference values of external air: -5 °C,, 80% RH.

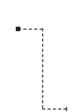
^{****} For temperatures below -5 $^{\circ}$ C, a heat exchanger with a water regime of 80/60 is recommended as an option.

^{**} Cooling capacity calculation is based on reference values of external air: 35 $^{\circ}$ C, 50% RH.

^{***} Heat-Pump heating capacity calculation is based on reference values of external air: -12 $^{\circ}$ C, 50% RH.

^{****} For temperatures below -12 °C, a heat exchanger with a water regime of 80/60 is recommended as an option.

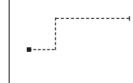
Heat-Pump Air Handling Unit


General Features

Standard Accessories

- Emergency Stop
- Air Damper
- Negative Pressure Trap
- Drift Eliminator
- Door Switch
- Roof Sheet

Case Structure


- Designed according to EN1886 standards.
- Double-walled, sound-insulated units with heat bridge.
- 60mm panel thickness,
- 110 kg/m3 A1 class rock wool.
- Aluminum Case with no heat bridge

Filter

- G2 G4 Panel
- M5 F7 Bag

- Mixed Air Damper
- Compressor
- MCC, DDC Control Panel

Heat-Pump Air Handling Unit

General Features

Heat- Pump Cycle

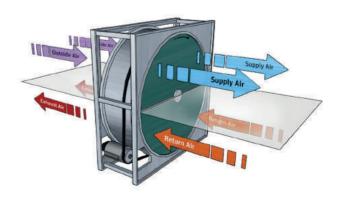
- Compressor
- Oil Separator
- Filter
- Four-Way Valve
- Expansion Valve
- Solenoid Valve
- Sight Glass
- Compensator

Heat Exchanger

Heat Recovery

Sorption Rotary

Components



Refer to the Air Handling Unit section "components" (page 18-23) for further information regarding Heat-Pump Air Handling Unit components.

Components

Condenser

- Condenser component in the circuit under summer conditions.
- Evaporator component in the circuit under winter conditions.
- Anodized or treated with hydrophilic coating as an option.

Compressor

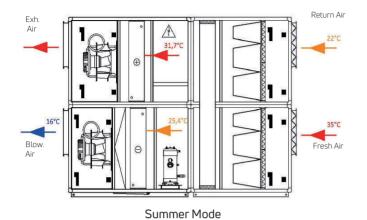
- High-efficiency scroll compressor
- R407 C coolant usage as standard
- R134A, R410A coolant usage as an option

Thermostatic Expansion Valve

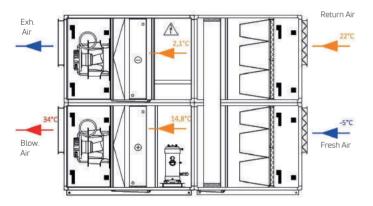
- Reduces the pressure of the high-pressure coolant in liquid form that arrives from the condenser down to the evaporator pressure.
- Expansion valve is a cooling control equipment that starts, stops and modulates the flow of the coolant according to the load requirements of the cooling system.
- · Used as standard.

Elektronic Expansion Valve

- Plays an important role for the evaporator to receive the sufficient amount
 of coolant in variable flow Capacity systems (VRF/VRV); where the flow
 Capacity of the coolant is constantly changing.
- Electronic expansion valves opeCapacity more efficiently as compared to thermostatic expansion valves.
- Used optionally.

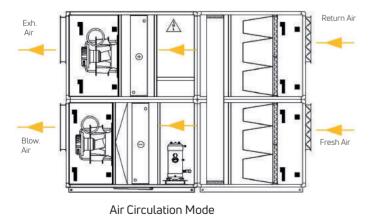

Four-Way Valve

- Ensures that the Heat-Pump coolant system provides heating and cooling.
- Performs hot gas by-pass in case of defrost.
- Directs the fluid to the evaporator or to the condenser according to the operating conditions.



Rotary Heat-Pump

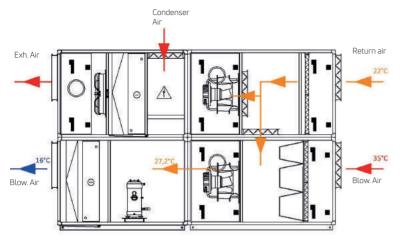
Scenarios



Scenario 1					
VIARHP Operation	Capacity	Result	Status		
Fresh Air	0 - 100 %	Comfort	Active		
Evaporator	0 - 100 %	Cooling	As per need		
Condenser	0 - 100 %	Heating	As per need		
Rotary	0 - 100 %	Heat Recovery	Active		
Ventilator	0 - 100 %	Air Flow	Active		
Exhausted Unit	0 - 100 %	Air Flow	Active		

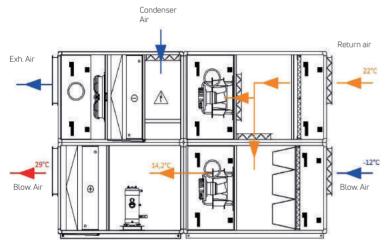
Winter Mode

Scenario 2					
VIARHP Operation	Capacity	Result	Status		
Fresh Air	0 - 100 %	Comfort	Active		
Evaporator	0 - 100 %	Heating	As per need		
Condenser	0 - 100 %	Cooling	As per need		
Rotary	0 - 100 %	Heat Recovery	Active		
Ventilator	0 - 100 %	Air Flow	Active		
Exhausted Unit	0 - 100 %	Air Flow	Active		

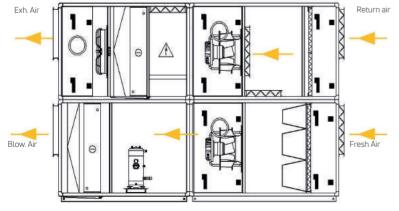


In air circulation mode, VIARHP	may also perform free-cooling	g.
---------------------------------	-------------------------------	----

Scenario 3					
VIARHP Operation	Capacity	Result	Status		
Fresh Air	0 - 100 %	Comfort	Active		
Evaporator	0 - 100 %	Cooling	Passive		
Condenser	0 - 100 %	Heating	Passive		
Rotary	0 - 100 %	Heat Recovery	Active		
Ventilator	0 - 100 %	Air Flow	Active		
Exhausted Unit	0 - 100 %	Air Flow	Active		


Mixed Air Heat-Pump

Scenarios



Scenario 1					
VIAKHP Operation	Capacity	Result	Status		
Fresh Air	0 - 40 %	Comfort	Active		
Evaporator	0 - 100 %	Cooling	As per need		
Condenser	0 - 100 %	Heating	As per need		
Mixture	0 - 60 %	Mixture	Active		
Ventilator	0 - 100 %	Air Flow	Active		
Exhausted Unit	0 - 100 %	Air Flow	Active		

Summer Mode

Scenario 2					
VIAKHP Operation	Capacity	Result	Status		
Fresh Air	0 - 40 %	Comfort	Active		
Evaporator	0 - 100 %	Cooling	As per need		
Condenser	0 - 100 %	Heating	As per need		
Mixture	0 - 60 %	Mixture	Active		
Ventilator	0 - 100 %	Air Flow	Active		
Exhausted Unit	0 - 100 %	Air Flow	Active		

Free-cooling Mode	Free-c	cooling	Mode
-------------------	--------	---------	------

Scenario 3						
Scendilo 3						
VIAKHP Operation	Capacity	Result	Status			
Fresh Air	0 - 100 %	Comfort	Active			
Evaporator	0 - 100 %	Cooling	Passive			
Condenser	0 - 100 %	Heating	Passive			
Mixture	0 - 60 %	Mixture	Passive			
Ventilator	0 - 100 %	Air Flow	Active			
Exhausted Unit	0 - 100 %	Air Flow	Active			

Electrical Automation

Checkpoints

Analog inputs

- Temperature sensor
- · Humidity sensor
- Pressure sensor types
- Frost protection temperature sensor

Alarms

- Motor thermal failure
- Filter contamination
- Frost
- Compressor thermal failure
- Rotary motor
- Low pressure
- High pressure
- Electric heater failure

Checkpoints

- Return air
- Fresh Air
- · Room thermostat
- Touch panel
- ModBus (RS485)
- BACnet

Analog Outputs

- Valve motor
- Motor frequency (0 10V)
- Damper motor
- Electronic Expansion Valve

Other Points

- Time programming
- Automatic mode change
- Feed water temperature
- · Free cooling

Digital İnputs

- Differential pressure switch
- Condenser High pressure
- Compressor High pressure
- Compressor Low pressure
- Frost thermostat

Digital Outputs

- Electric heater step
- Fan start stop
- Compressor start
- Four-Way Valve
- Valve motor

Safety Points

- Emergency Stop
- · Safety thermostat
- · High gas pressure
- Low gas pressure
- Condensation pressure
- Motor protection
- Frost thermostat
- Temperature thermostat
- Door Switch

Brands of electrical automation equipment may differ from the project and specifications. See pages 24-27 for the electrical automation process.

Pool Dehumidification Unit content

Why Viaclimate?
Products Overview
Selection Chart
General Features
Components
Dehumidification Cycle
VIAPOOL Operation Scenarios
Electrical Automation

49-64

After Sales Service

Quick Service

Easy Installation

Smar

Compliance to Standards

Rotary

Scroll Compressor

Cooling Fluid

Dehumidification

Compliance to Standards

Water Heating

Plug and Play

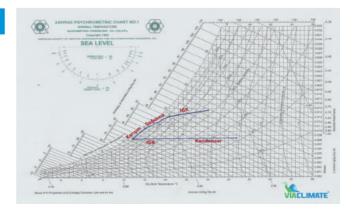
Why ViaClimate?

High Energy Efficiency

- High-efficiency plated heat recovery
- High-efficiency heat-pipe heat recovery
- Energy-efficient plug fan mechanism
- Energy-efficient EC fan mechanism
- High level automated control

Human Health

- Negative pressure pool environment
- Suitable ambient temperature
- Fresh air requirement
- Dehumidification process
- Corrosion, humidity etc. prevention

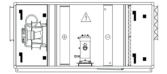


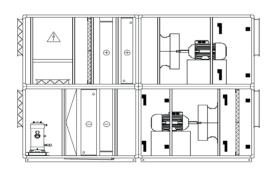
Plug and Play

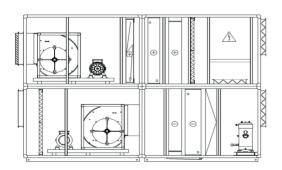
- IntegCapacityd cooling cycle
- IntegCapacityd MCC and DDC panels
- Automation field equipment installed
- Feeding and signaling cables installed
- An architecture that does not require any external units

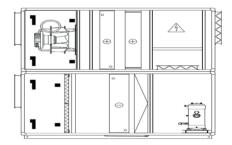
Design Criteria

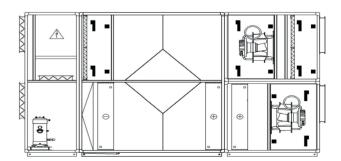
- VDI 2089 (Dehumidification capacity)
- VDI 2089 (Fresh air quantity)
- VDI 2089 (Ambient conditions)
- ERP 2018 (Energy efficiency)
- EN 1886 (Mechanical performance)

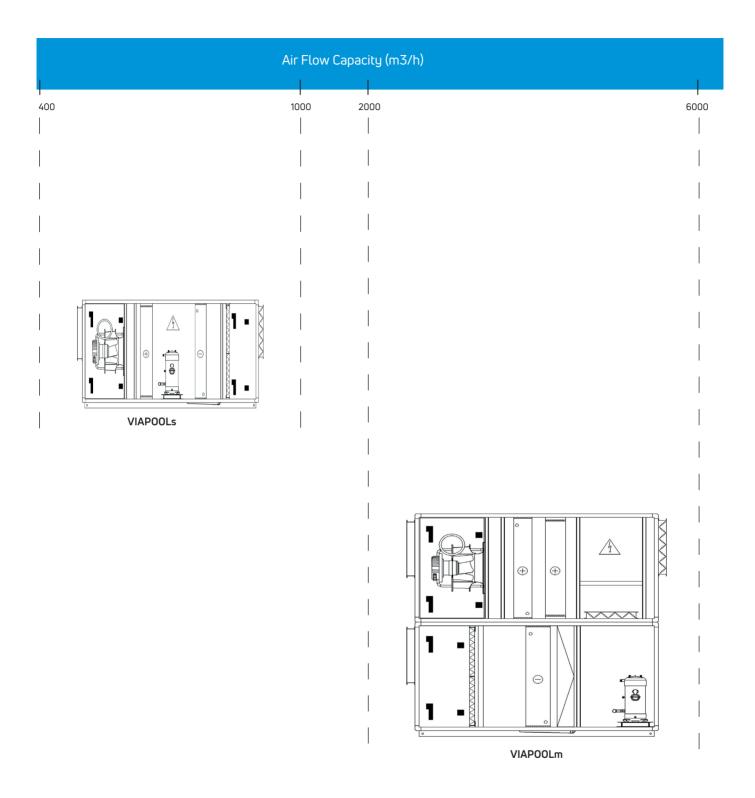

Why ViaClimate?

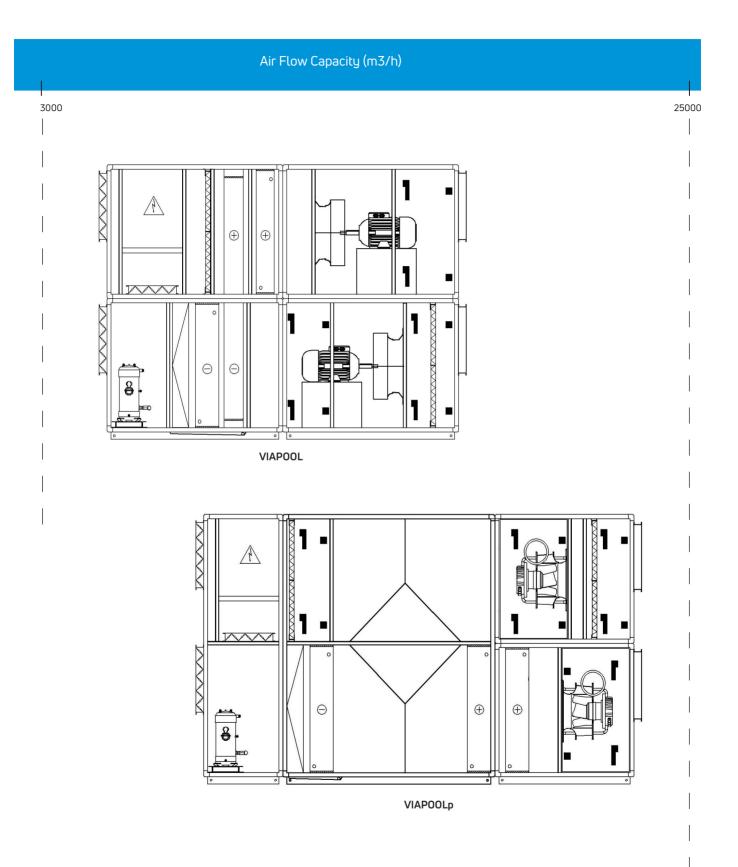

Smart Automation


- Automatic assignment to the most efficient scenario
- High level DDC control
- Free-cooling
- Remote control
- Time programming




Extra Designs





Products Overview

 $\label{lem:condition} \mbox{Air flow Capacity chart is intended for visual and informative purposes.}$

Products Overview

Air flow Capacity chart is intended for visual and informative purposes.

Pool Dehumidification Unit

Selection Chart

VIACLIMATE Pool Dehumification Unit		VIAPOOLs 400	VIAPOOLs 750	VIAPOOLs 1000	
Pool Surface		m²	8	15	20
Dehumidificati	ion Capacity*	kg/h	1.77	3.32	4.43
Air Flow Capa	city	m³/h	400	750	1000
Exterior Static Pressure		Pa	100	100	100
Motor Power		kW	0.17	0.17	0.75
Compressor Power		kW	0.97	1.46	1.71
Total Product	Total Product Power kW		1.14	1.63	2.46
Product Powe	Product Power Input V/Ph/Hz			400/3/50	
Filter Efficienc	y	IS016890		ePM10	
Product	Height	mm	400	400	500
External	Width	mm	400	400	500
Dimensions	Length	mm	1200	1200	1200

Tablo 1

	VIACLIMATE Dehumificatio		VIAPOOLm 2000	VIAPOOLm 3000	VIAPOOLm 4000	VIAPOOLm 5000	VIAPOOLm 6000
Pool Surface	ol Surface m²		40	60	80	100	120
Dehumidificati	on Capacity*	kg/h	12	15.9	22	30	34
Air Flow Capa	ity	m³/h	2000	3000	4000	5000	6000
Exterior Static	Pressure**	Pa	200	250	250 250 250		
Water Heater	Capacity ***	kW	16	23 30 37 4			44
Motor Power*	***	kW	1.05 1.8 2.95 2.95		2.95	3.35	
Compressor P	ower	kW	4.25	4.9 5.91 8.55 9.8			9.8
Total Product	Power	kW	5.3	6.7	8.86	11.5	13.15
Product Powe	r Input	V/Ph/Hz			400/3/50		
Filter Efficienc	y	IS016890			ePM10		
Product	Height	mm	1584	1585	1586	1587	1588
External	Width	mm	732	885	1038	1191	1344
Dimensions	Length	mm	1470	1470	1470	1570	1570

Tablo 2

^{*} In calculating the dehumidification capacity, the water temperature was taken as 28 °C , ambient temperature 30 °C $\,$ - 54 % RH and outdoor air absolute humidity 9 g/kg.

^{*} In calculating the dehumidification capacity as per the VDI 2089 standards; the water temperature was taken as 28 °C, ambient temperature 30 °C - 54 % RH, outdoor air absolute humidity 9 g/kg and pool water depth > 1,35 m for reference. When dehumidification is on active mode with 30% fresh air, the outdoor air temperature is 5° C - 85 % RH.

 $^{{\}tt **Total}\ exterior\ static\ pressure\ blowing\ and\ return\ lines\ were\ calculated\ sepaCapacityly.$

^{***} In calculating the water heating capacities, for operation with 30% fresh air and dehumidification on passive mode, the outdoor air temperature is -15 °C and the battery outlet temperature is 38 °C

^{****} Motor power is the unit power of the plug fan EC motor.

Pool Dehumidification Unit

Selection Chart

Pool	VIACLIMATE Dehumificatio	n Unit	VIAPOOL 3000	VIAPOOL 5000	VIAPOOL 8000	VIAPOOL 10000	VIAPOOL 12000	VIAPOOL 15000	VIAPOOL 18000	VIAPOOL 20000	VIAP00L 25000
Pool Surface		m²	60	105	165	210	250	310	380	420	520
Dehumidificat	ion Capacity*	kg/h	19	32	50	63	75	94	113	125	156
Air Flow Capa	city	m³/h	3000	5000	8000	10000	12000	15000	18000	20000	25000
Exterior Static	Pressure	Pa	500	500	500	500	500	500	500	500	500
Water Heating	Capacity**	kW	32	51	81	102	122	152	183	203	253
Motor Power*	**	kW	2.2	3	4	5.5	7.5	7.5	11	11	15
Compressor P	ower	kW	5.8	9.2	12.8	18.4	20.6	27.6	30.9	36.8	41.2
Total Product	Power	kW	10.2	15.2	20.8	29.4	35.6	42.6	52.9	58.8	71.2
Product Powe	r Input	V/Ph/Hz					400/3/50				
Filter Efficienc	:y	IS016890					ePM10				
Product	Height	mm	1584	1584	2196	2196	2196	2808	2808	2808	3114
External	Width	mm	732	1191	1191	1497	1803	1497	1803	2109	2109
Dimensions	Length	mm	3340	3340	3440	3440	3490	3590	3640	3890	3890

Tablo 3

	MATE Heat Re Dehumification		VIAPOOLp 3000	VIAPOOLp 5000	VIAPOOLp 8000	VIAPOOLp 10000	VIAPOOLp 12000	VIAPOOLp 15000	VIAPOOLp 18000	VIAPOOLp 20000	VIAPOOLp 25000
Pool Surface		m²	60	105	165	210	250	310	380	420	520
Dehumidificati	on Capacity*	kg/h	19	32	50	63	75	94	113	125	156
Air Flow Capac	ity	m³/h	3000	5000	8000	10000	12000	15000	18000	20000	25000
Exterior Static	Pressure	Pa	500	500	500	500	500	500	500	500	500
Heat Recovery	Capacity	kW	9.8	16.8	25.4	32.4	35.7	48	61.2	65.6	72
Water Heating	Capacity**	kW	34	56	89	112	136	168	204	224	280
Motor Power**	**	kW	2.2	4	5.5	7.5	7.5	11	11	15	15
Compressor Po	ower	kW	2.9	5	7.4	10	11.6	14.8	17	19.5	23.85
Total Product P	Power	kW	7.3	13	18.4	25	26.6	36.8	39	49.5	5385
Product Power	Input	V/Ph/Hz					400/3/50				
Filter Efficienc	y	IS016890					ePM10				
Product	Height	mm	1584	1584	2196	2196	2196	2808	2808	2808	3114
External	Width	mm	732	1191	1191	1497	1803	1497	1803	2109	2109
Dimensions	Length	mm	4290	4440	4640	4690	4690	5340	5340	5390	5390

Tablo 4

^{*}In calculating the dehumidification capacity as per the VDI 2089 standards; the water temperature was taken as $28 \, ^{\circ}$ C, ambient temperature $30 \, ^{\circ}$ C- $54 \, ^{\circ}$ RH, outdoor air absolute humidity $9 \, g/$ kg and pool water depth > $1,35 \, \text{m}$ for reference.

^{**} In calculating the water heating capacities the outdoor air temperature was taken as -15 °C - 90% RH.

^{***} Motor power is the unit power of the plug fan AC motor. (Can be manufactured with EC fan as an option.

^{*}In calculating the dehumidification capacity as per the VDI 2089 standards; the water temperature was taken as 28° C, ambient temperature 30° C - 54 % RH, outdoor air absolute humidity 9 g/kg and pool water depth > 1,35 m for reference.

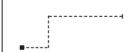
 $^{^{**}}$ In calculating the water heating capacities the outdoor air temperature was taken as $\,$ -15°C - 90% RH.

^{***} Motor power is the unit power of the plug fan AC motor. (Can be manufactured with EC fan as an option) Heat recovery is manufactured with aluminum plated or heat-pipe options.

VIAPOOL General Features

Standard Accessories

- Emergency Stop
- Air Damper
- Negative Pressure Trap
- Drift Eliminator


Case Structure

- Designed according to EN1886 standards.
- Double-walled, sound-insulated units.
- 60mm panel thickness,
- 90 kg/m3 A1 class rock wool.
- Aluminum profile Case.
- Straight case design

Filter

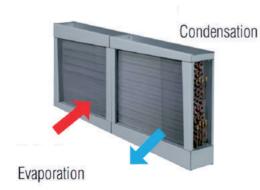
- G2 G4 Filter
- M5 F7 Bag

Other Components

- Mixed Air DamperDehumidification Cycle
- MCC, DDC Control Panel

VIAPOOL General Features

Components



Refer to the Air Handling Unit section "components" (page 24-28) for further information regarding Pool Dehumidification Unit components.

Dehumidification Cycle

Evaparator

- Cooling component of the circuit. (Dehumidification)
- Drift eliminator comes as standard
- A double-pitched, insulated condensate tray that is made of stainless sheet comes as standard
- Anodized or treated with hydrophilic coating as an option

Condenser

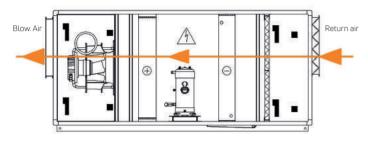
- Condensing component of the circuit.
- Anodized or treated with hydrophilic coating as an option

Compressor

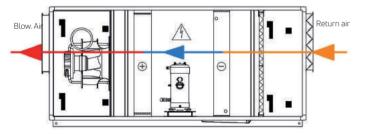
- High-efficiency scroll compressor
- R407 C coolant usage as standard
- R410A coolant usage as an option

Thermostatic Expansion Valve

- Reduces the pressure of the high-pressure coolant in liquid form that arrives from the condenser down to the evaporator pressure.
- Expansion valve is a cooling control equipment that starts, stops and modulates the flow of the coolant according to the load requirements of the cooling system.
- Used as standard.


Electronic Expansion Valve

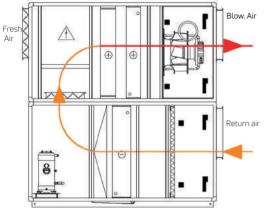
- Plays an important role for the evaporator to receive the sufficient amount of coolant in variable flow Capacity systems (VRF/VRV); where the flow Capacity of the coolant is constantly changing.
- Electronic expansion valves opeCapacity more efficiently as compared to thermostatic expansion valves.
- Used optionally.


VIAPOOLs Operating

Scenarios

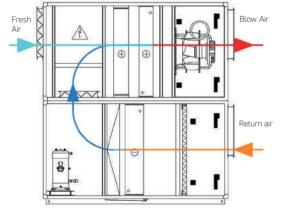
*The pool is not in us	se.	
------------------------	-----	--

Scenario 1								
VIAPOOLs Operation	Capacity	Result	Status					
Cooling	0 - 100 %	Dehumidification	Passive					
Condenser	0 - 100 %	Heating	Passive					
Ventilator	0 - 100 %	Air Flow	Active					


* The pool is in use.

Scenario 2								
VIAPOOLs Operation	Capacity	Result	Status					
Cooling	0 - 100 %	Dehumidification	Active					
Condenser	0 - 100 %	Heating	Active					
Ventilator	0 - 100 %	Air Flow	Active					

Senaryoları verilen ürünün teknik detayları sayfa 54 Tablo 1'de yer almaktadır.

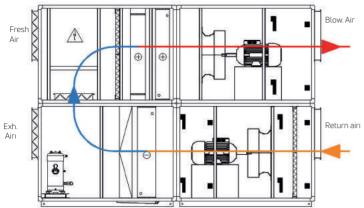

VIAPOOLm Operating

Scenarios

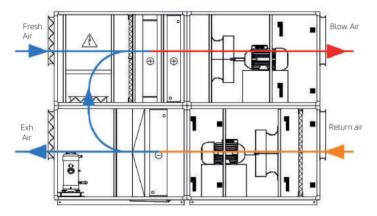
*The pool is not in use.

Scenario 1							
VIAPOOLm Operation	Capacity	Result	Status				
Fresh Air	0 - 30 %	Dehumidification	Passive				
Cooling	0 - 100 %	Dehumidification	Passive				
Condenser	0 - 100 %	Heating	Passive				
Water Heater	0 - 100 %	Heating	As per need				
Ventilator	0 - 100 %	Air Flow	Active				

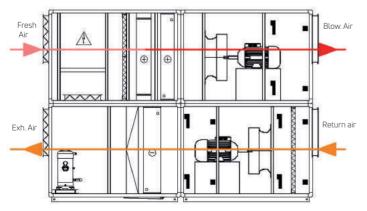
* The pool is in use.


Scenario 2								
VIAPOOLm Operation	Capacity	Result	Status					
Fresh Air	0 - 30 %	Dehumidification	Active					
Cooling	0 - 100 %	Dehumidification	Active					
Condenser	0 - 100 %	Heating	Active					
Water Heater	0 - 100 %	Heating	As per need					
Ventilator	0 - 100 %	Air Flow	Active					

Technical details of the product for which the scenarios are specified are shown on page 54, Table 2.


VIAPOOL Operating

Scenarios

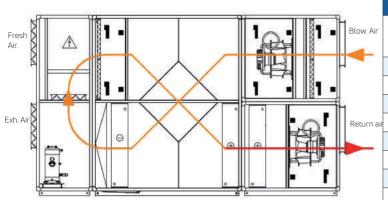

4		0	Ŀ		_ i
* The pool is not in	use.				

Scenario 1							
VIAPOOL Operation	Capacity	Result	Status				
Fresh Air	0 - 30 %	Dehumidification	Passive				
Cooling	0 - 100 %	Dehumidification	As per need				
Condenser	0 - 100 %	Heating	As per need				
Water Heater	0 - 100 %	Heating	As per need				
Ventilator	0 - 100 %	Air Flow	Active				
Exhausted Unit	0 - 100 %	Air Flow	Passive				

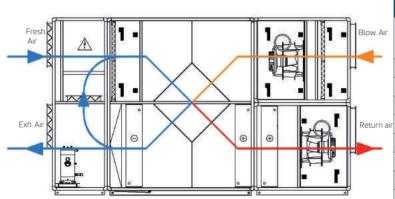
*	The	pool	is	in	use.
---	-----	------	----	----	------

Scenario 2								
VIAPOOL Operation	Capacity	Result	Status					
Fresh Air	0 - 30 %	Dehumidification	Active					
Cooling	0 - 100 %	Dehumidification	Active					
Condenser	0 - 100 %	Heating	Active					
Water Heater	0 - 100 %	Heating	As per need					
Ventilator	0 - 100 %	Air Flow	Active					
Exhausted Unit	0 - 100 %	Air Flow	Active					

* The nool	is in use	during t	he summer	nand mid	nnzsaz

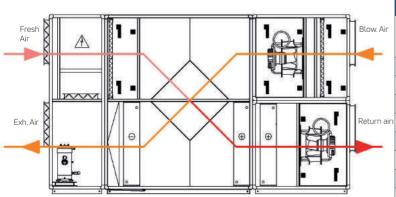

^{*}Free-cooling is used in the scenarios for which operation is performed.

Scenario 3										
VIAPOOL Operation	Capacity	Result	Status							
Fresh Air	0 - 100 %	Dehumidification	Active							
Cooling	0 - 100 %	Dehumidification	Passive							
Condenser	0 - 100 %	Heating	Passive							
Water Heater	0 - 100 %	Heating	As per need							
Ventilator	0 - 100 %	Air Flow	Active							
Exhausted Unit	0 - 100 %	Air Flow	Active							


Technical details of the product for which the scenarios are specified are shown on page 55, Table 3.

VIAPOOLp Operating

Scenarios



	Scenario 1											
٢	VIAPOOLp Operation	Capacity	Result	Status								
	Fresh Air	0 - 30 %	Dehumidification	Passive								
	Cooling	0 - 100 %	Dehumidification	As per need								
	Heat Recovery	100 %	Dehumidification	Active								
air	IGK By-pass	100 %	Air Flow	Passive								
	Condenser	0 - 100 %	Heating	As per need								
	Water Heater	0 - 100 %	Heating	As per need								
	Ventilator	0 - 100 %	Air Flow	Active								
	Exhausted Unit	0 - 100 %	Air Flow	Passive								

The	pool	is	in	use.
-----	------	----	----	------

Scenario 2										
VIAPOOLp Operation	. I abacıtıı		Status							
Fresh Air	0 - 30 %	Dehumidification	Active							
Cooling	0 - 100 %	Dehumidification	Active							
Heat Recovery	100 %	Dehumidification	Active							
IGK By-pass	100 %	Air Flow	Passive							
Condenser	0 - 100 %	Heating	Active							
Water Heater	0 - 100 %	Heating	As per need							
Ventilator	0 - 100 %	Air Flow	Active							
Exhausted Unit	0 - 100 %	Air Flow	Active							

^{*}Free-cooling is used in the scenarios for which operation is performed.

Scenario 3									
VIAPOOLp Operation	Capacity	Result	Status						
Fresh Air	0 - 30 %	Dehumidification	Active						
Cooling	0 - 100 %	Dehumidification	Passive						
Heat Recovery	100 %	Dehumidification	Passive						
IGK By-pass	100 %	Air Flow	Active						
Condenser	0 - 100 %	Heating	Passive						
Water Heater	0 - 100 %	Heating	As per need						
Ventilator	0 - 100 %	Air Flow	Active						
Exhausted Unit	0 - 100 %	Air Flow	Active						

Technical details of the product for which the scenarios are specified are shown on page 55, Table 4.

^{*}The pool is not in use by people during the winter season.

Electrical Automation

Checkpoints

Analog Inputs

- Temperature sensor
- Humidity sensor
- Pressure sensor
- Frost protection temperature sensor

Alarms

- Motor thermal failure
- Belt broken
- Filter contamination
- Frost
- Compressor thermal failure
- Low pressure
- High pressure

Checkpoints

- Return air
- Fresh Air
- Room thermostat
- Touch panel
- ModBus (RS485)
- BACnet

Analog Outputs

- Valve motor
- Motor frequency
- Damper motor

Other Points

- Time programming
- Automatic mode change
- Feed water temperature
- Free cooling

Digital Inputs

- Differential pressure switch
- Condenser High pressure
- Compressor High pressure
- Compressor Low pressure
- Frost thermostat

Digital Outputs

- Electric heater step
- Fan start stop
- Compressor start
- · Valve motor

Safety Points

- Emergency Stop
- Safety thermostat
- By-pass damper
- High gas pressure
- Low gas pressure
- Condensation pressure
- Motor protection
- Door Switch

Brands of electrical automation equipment may differ from the project and specifications. See pages 24-27 for the electrical automation process.

Kitchen Exhaust and Air Handling Unit content

Why Viaclimate?
Products Overview
Selection Chart
General Features
Components Optional
Components
Electrical Automation

65 - 74

Suitable for Aft Outdoor Use S

After Sales Service

Advanced

Lasy Installation

Why ViaClimate?

High Efficiency (Odor, Oil, Fume)

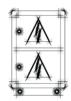
- Standardization of the equipment and kitchen exhaust systems were ensured by German VDI 2052 and English DW/172.
- High performance with optimum flow speed and minimum energy.
- Minimum energy consumption thanks to low pressure loss.

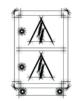
Eco Friendly

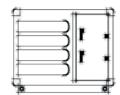
- Extracts the oil, fumes and contaminated air geneCapacityd during the cooking activities in kitchens, and provides fresh air to the atmosphere.
- · Minimizes the risk of fire.
- Electrostatic cases with recycled steel Cases and aluminum collectors are used.

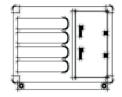
A Product Design That Is Suitable to Your Kitchen

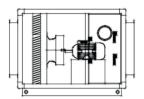
- While selecting a Kitchen Exhaust Unit, you may review reference kitchens and see which product will be the correct solution for your kitchen.
- Odor and oil density is at a low level in environments such as cafeterias
- Odor and oil density is at a medium level in environments such as natural gas cooking units, stone ovens, wood-fired ovens etr
- Odor and oil density is at a high level in environments such as wood-fired cooking ovens, natural gas meat grill units etc.
- Odor and oil density is at a very high level in environments such as wood and coal-fired meat grill units, electrical fryers (fast food) etc.

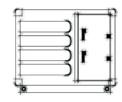



Why ViaClimate?

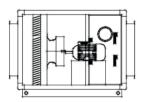

Efficient Filtering

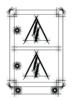

Very High Density

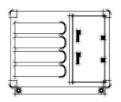



In addition to high-temperature kitchen exhaust fans, two-stage electrostatic filtration and two-stage active carbon filtration is carried out for environments that have a very high density of fumes, odor and oil.

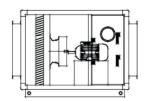
High Density





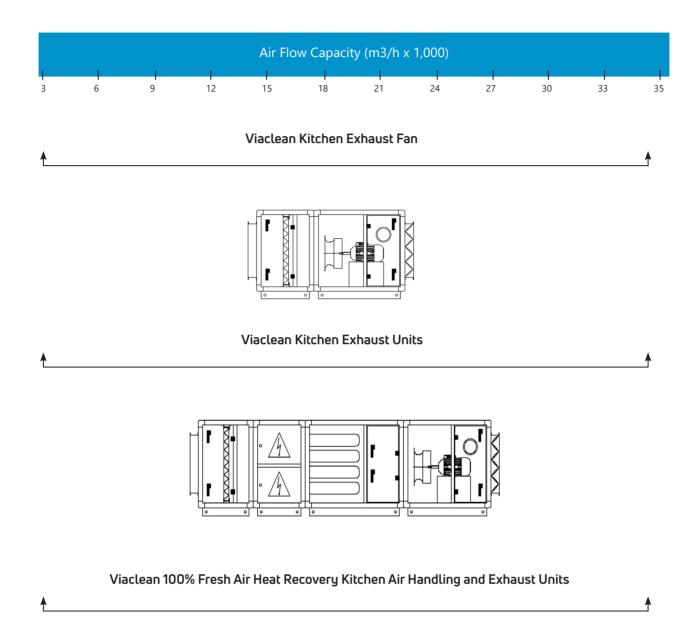


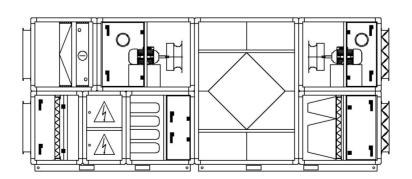
In addition to high-temperature kitchen exhaust fans, two-stage electrostatic filtration and two-stage active carbon filtration is carried out for environments that have a high density of fumes, odor and oil.



In addition to high-temperature kitchen exhaust fans, two-stage electrostatic filtration and two-stage active carbon filtration is carried out for environments that have a medium density of fumes, odor and oil.

Low Density


High-temperature kitchen exhaust fans with metal oil filters will meet the requirements of environments that have a low density of fumes, odor and oil.



Please contact us to learn about your kitchen density.

Products Overview

Air flow Capacity chart is intended for visual and informative purposes.

Kitchen Exhaust and Air Handling Unit

Selection Chart

VIACLIMATE							Viacl	leanS				
Kitch	en Exhaust	Fan	4x4	4x6	4x8	8x6	8x9 L	8x9 H	12x9 L	12x9 H	12x12	15x12
Air Flow Capacity		m³/h	3000	5000	7000	10000	13000	15000	19000	22000	28000	35000
Exterior Static Pressure		Pa	300	300	300	300	500	500	500	500	500	500
Metal Filter		mm	610x610	610x915	610x1220	1220x915	1220x1220	1220x1220	1830x1220	1830x1220	1830x1830	2135x1830
Total Produc	t Power	kW	0,75	1,5	2,2	4	7,5	11	11	11	11	15
Product Pow	er Input	V/Ph/Hz	400 / 3 / 50									
Product	Height	mm	852	852	852	1464	1464	1464	2076	2076	2076	2535
External Dimensions	Width	mm	732	1038	1344	1038	1497	1497	1497	1497	1956	1956
	Length	mm	1250	1250	1250	1400	1550	1700	1700	1850	1850	1900

VIACLIMATE		ViacleanM										
Kitch	Kitchen Exhaust Unit			4x6	4x8	8x6	8x9 L	8x9 H	12x9 L	12x9 H	12x12	15x12
Air Flow Capa	Air Flow Capacity		3000	5000	7000	10000	13000	15000	19000	22000	28000	35000
Exterior Static	Pressure	Pa	300	300	300	300	500	500	500	500	500	500
Metal - Active Carbon Filter		mm	610x610	610x915	610x1220	1220x915	1220x1220	1220x1220	1830x1220	1830x1220	1830x1830	2135x1830
Electrostatic F	ilter Model		300 500 700 500xx 700xx 700xx 700xx 700xxx						700xxx	900xxx	900xxxx	
Electrostatic P	ower	kW	0.2	0.2	0.2	0.4	0.4	0.4	0.6	0.6	0.8	1
Total Product	Power	kW	1.7	2.4	4.2	5.9	7.9	11.4	11.6	11.6	15.8	19.5
Product Powe	r Input	V/Ph/Hz					400 /	3/50				
Product	Height	mm	852	852	852	1464	1464	1464	2076	2076	2076	2535
External	Width	mm	732	1038	1344	1038	1497	1497	1497	1497	1956	1956
Dimensions	Length	mm	3020	3020	3170	3320	3320	3470	3620	3620	3660	3810

VIACLIMATE			ViacleanL									
Kitchen Air	Handling and Unit	l Exhaust	4x5	4x7	4x9	8x7	8x10 L	8x10 H	12x10 L	12x10 H	12x13	
Air Flow Capa	city	m³/h	3000	5000	7000	10000	13000	15000	19000	22000	28000	
Blowing Temp	erature *	°C	15,9	15,6	15,6	15,8	15,7	16,3	15,4	16,1	16,9	
Exterior Station	Pressure	Pa	300	300	300	300	500	500	500	500	500	
Dx Capacity		kW	18	32	45	63	83	91	120	133	160	
Metal - Active	Carbon Filter	mm	610x610	610x915	610x1220	1220x915	1220x1220	1220x1220	1830x1220	1830x1220	1830x1830	
Roughing - Ba	ag Filter	mm	610x610	610x915	610x1220	915x915	915x1220	915x1220	1220x1525	1220x1525	1220x1830	
Electrostatic	Filter Model		300	500	700	500xx	700xx	700xx	700xxx	700xxx	900xxx	
Electrostatic	Power	kW	0.2	0.2	0.2	0.4	0.4	0.4	0.6	0.6	0.8	
Total Product	Power	kW	3.9	6.2	8.2	13.4	22.4	22.4	26.6	30.6	37.8	
Product Powe	er Input	V/Ph/Hz					400/3/50					
Product	Height	mm	1584	1584	1584	2808	2808	2808	4032	4032	4032	
External	Width	mm	882	1188	1494	1188	1647	1647	1647	1647	2106	
Dimensions	Length	mm	3820	3900	3900	4840	4950	5140	5470	5820	5820	

 $^{^{\}star}\text{In calculating the blowing temperature, DX Battery air inlet condition was taken as 35 <math display="inline">^{\circ}\text{C.}$ (By-Pass line active)

Viaclean General Features

Standard Accessories

- Emergency Stop
- Air Damper
- Negative Pressure Trap (Comes standard with ViacleanL)
- Drift Eliminator (Comes standard with ViacleanL)

Case Structure

- Designed according to EN1886 standards
- Aluminum profile Case structure
- Straight, easy to clean interior
- 60mm double-walled panels
- 1 mm Electrostatic powder painted exterior sheet; 0,8 mm galvanized interior sheet
- 90 kg/m3 rock wool with A1 fire rating as per DIN4102
- EPDM seal for case tightness
- Double-pitched, insulated oil drain tray that is made of stainless steel
- Aluminum damper on air exhaust
- Roof sheet that provides protection against external weather conditions.

Filter

- G2 Metal Oil Filter
- Active Cartridge Carbon
- Electrostatic

Viaclean General Features **Kitchen Exhaust and Air Handling Unit**

Optional Accessories

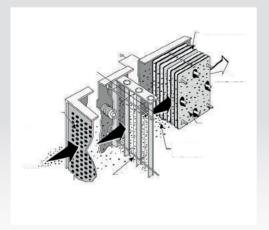
- Thermal Pacco Switch
- Internal Lighting
- Door Switch
- Roof Sheet
- MCC, DDC Control Panel
- F7 Filter
- Muffler
- Diffuser

Fan

- EC
- Pli
- Double Inlet(Back Sloping)
- Ex-proof

Heat Exchanger

• Gas-filled (DX) (ViacleanL model)



Components

Plug Fan Mechanism

- Freely opeCapacityd, back sloping, high-performance, directly coupled fan
- High-efficiency system
- AC motors of IE2 or IE3 energy classes
- Operating capacity of up to 2300 Pa Differential Pressure
- 100% velocity control with frequency inverter

Active Carbon Cartridge Filter

- Capable of holding bad odors and toxic gases.
- Easy replacement of existing carbon granules
- Molecular filtration acc. to EN 779 standard

Metal Filter

- Holds oil particles
- Washable
- Aluminum wire structure
- Class G2 acc. to EN 779 standard
- Operating capability up to 200°C and 80 % rH

Elektrostatik Filter

- Ionizes smoke, odor and oil from the air and destroys the particles
- Aluminum-alloy collector case material
- Washable case material
- Molecular filtration acc. to EN 779 standard

Optional Components

OC

F7 Filter

- · High particle holding capacity
- Class M5-F9 acc. to EN 779 standard

EC Fan Mechanism

- Systems to which high-efficiency directly coupled fan and EC motor are connected.
- EC motors of IE4 and higher energy classes are used.
- The motor group can be controlled with 0-10V signal.
- Capable of operating with a lower noise level on high pressures.

Aluminum Plated Heat Recovery

- Systems where the thermal energy in the return air is transferred to the air blowing energy without requiring power.
- Free cooling during mid seasons thanks to the by-pass line
- Comes standard with a condensate tray on the exhaust air outlet.
- Does not have any moving parts and practically does not require any maintenance.
- Has an energy efficiency of approximately up to 50-70% in dry systems.

Gas-filled (DX) Battery

- Used for air cooling and heating applications with condensing units (external unit).
- External unit is designed according to the pipe inlet and outlet diameters.
- Number of inlets and outlets are increased for more than one VRF external unit.
- Used with a drift eliminator as standard
- A double-pitched, insulated condensate tray that is made of stainless sheet is used as standard.

Muffler

- Sound absorbing casettes that are designed to minimize the air noise geneCapacityd by the moving parts of the unit, in order to maintain
- · Rock wool with fiberglass is used as a sound absorbing material.
- The standard product is demountable.

Frequency Converter

- · Adjusts the motor frequency
- IP20 or IP21 protection class
- Prolongs the service life of the moving parts
- Take-off platform and braking system
- · Automated energy optimization
- Electronic thermal relay
- 0-100 V remote control capability with a potentiometer

Electrical Automation

Checkpoints and Features

Alarms

- Motor thermal failure
- Belt broken
- Filter contamination
- Electrostatic failure

Other Points

Time programming

Analog Outputs

- Motor frequency
- Damper motor

Digital Outputs

• Fan start - stop

Safety Points

- Emergency Stop
- Electrostatic Filter Door Switch
- Electrostatic grounding
- Door Switch
- · Motor protection

Digital Inputs

• Differential pressure switch

Viaclean 100% Fresh Air Heat Recovery Kitchen Air Handling Units Electrical Automation control features

- » MCC and DDC panel design from a single control point
- » Blowing and exhaust air flow Capacity adjustment with frequency inverter
- » Capability of operating with an air quality sensor
- » Capability of preventing air flow to indoors with an exhaust air damper while the Product is off
- » Fire extinguishing system
- » Control and alarm for filter level (SepaCapacityly applied for each filter level.)
- » Phase protection
- » Capability of working under summer and winter conditions
- » Ambient temperature control
- » Operation time scheduling
- » Free cooling or Free heating operation
- » Modbus (RS485) communication protocol
- » VRF external unit integration with Heat Recovery Kitchen Exhaust Unit
- » Full inverter VRF External unit

Brands of electrical automation equipment may differ from the project and specifications. See pages 24-27 for the electrical automation process.

Rooftop Packaged Air Conditioner content

Why Viaclimate? Products Overview General Features Selection Chart Electrical Automation

75 - 82

Warranty

After Sales

Service

Easy

High Energy Efficiency

Smart

Compliance to Standards

Rotary

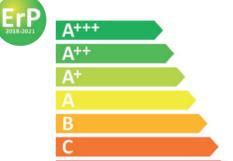
Scroll Compresör

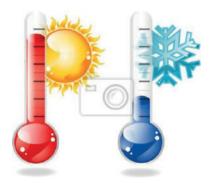
Cooling Fluid

Heat-Pump

Smart Defrost

Thermodynamic HR





Why ViaClimate?

High Energy Efficiency

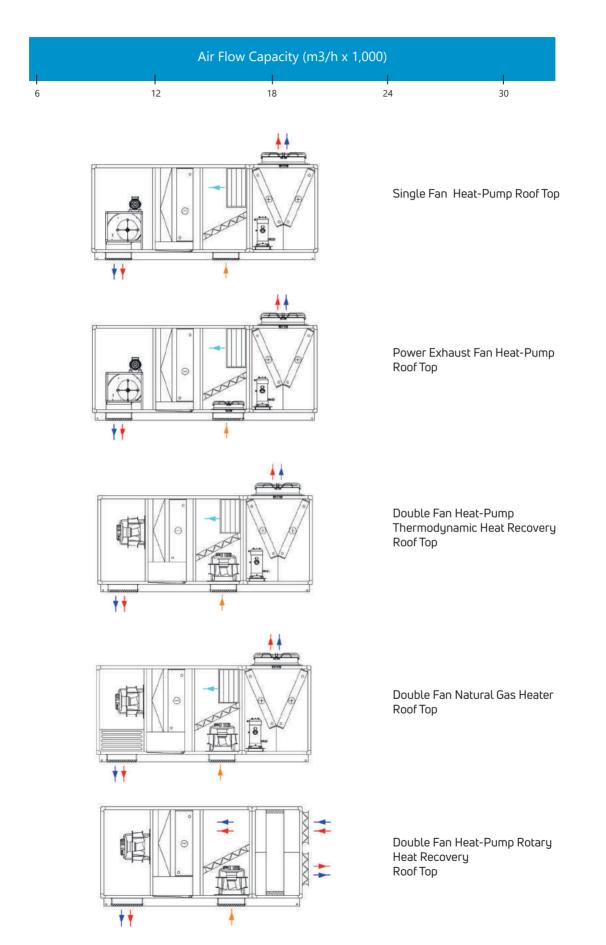
- Ensures high energy efficiency with low energy consumption.
- High-efficiency scroll compressor.
- · Design that features an economizer.
- Energy-efficient automated control.
- Free-cooling operation
- · Heat recovery option
- Packaged air conditioner production meets the objectives and requirements of ERP2018.

Optimal Air Comfort

- Design according to the ambient comfort level and EN 14511-2013 Standard
- Meeting the heating and cooling requirements of the site in addition to fresh air needs
- Keeping the comfort level at stable conditions
- Meeting fresh air demands according to the air quality sensor
- Affordable heating performance with a natural gas heater
- Capacity to keep the environmental conditions at positive pressure conditions

Plug and Play

- An architecture that does not require any external units
- IntegCapacityd cooling cycle
- IntegCapacityd MCC and DDC panels
- Easier to install compared to individual systems



Smart Defrost Mode

- Hot gas by-pass
- Thermodynamic Heat Recovery
- Optional heater circuit
- Optional defrosting electric heater circuit

Products Overview

Some configurations of VIACLIMATE Roof Top are given above for illustration purposes.

Rooftop Packaged Air Handling Unit

Selection Chart

VIACLIMATE Rooftop Packaged Air Har	ndling Unit	RTV12	RTV16	RTV20	RTV24	RTV26	RTV38	RTV42	RTV50	RTV60
Air Flow Capacity	m³/h	6000	8000	10000	12000	15000	18000	20000	25000	30000
Exterior Static Pressure	Pa	300	300	400	400	400	500	500	500	500
Cooling Capacity *	kW	37.02	49.35	61.7	74.04	92.55	111.06	123.4	154.35	185.1
Total Withdrawn Power	kW	10.25	16.38	20.29	24.57	32.73	34.62	40.88	51.1	61.32
EER		3.61	3.01	3.04	3.01	2.83	3.21	3.02	3.02	3.02
Heat-Pump Heating Capacity**	kW	47.13	65.74	81.99	98.61	125.28	145.68	164.28	205.35	246.42
Total Withdrawn Power	kW	11.25	15.96	19.77	23.94	30.64	34.56	39.44	49.3	59.16
СОР		4.19	4.12	4.15	4.12	4.09	4.22	4.17	4.17	4.17
Water Heater Capacity	kW	38	50	62	76	90	110	120	152	184
Natural Gas Heater Capacity	kW	40	60	75	100	110	125	150	175	200
Electric Heater 1st Step	kW	18	24	30	36	44	54	60	75	90
Electric Heater 2nd Step	kW	36	48	60	72	88	108	120	150	180
Product Power Input	V/Ph/Hz					400/3/50				
Filter Efficiency	IS016890					ePM10				

Table of dimensions is not given as it has multiple variations for Rooftop Packaged Air Conditioner configurations (return fan, heat recovery, heater options etc.).

In calculating the optional heater capacity, the outdoor temperature $5\,^{\circ}$ C, 80 % RH values were taken as reference. In calculating the EER and COP values, the EN 14511 Standard was taken as reference.

^{*}In calculating the cooling capacity, the outdoor temperature 35 $^{\circ}$ C , 50 $^{\circ}$ RH values were taken as reference.

^{*}In calculating the cooling capacity, the evaporator inlet temperature 27 °C, 50 % RH values were taken as reference.

**In calculating the Heat-Pump heating capacity, the outdoor temperature 7 °C, 80 % RH values were taken as reference.

**In calculating the Heat-Pump heating capacity, evaporator inlet temperature 20 °C, 50% RH values were taken as reference.

Rooftop Packaged Air Handling Unit

General Features

Case Structure

- Designed according to EN1886 standards.
- Double-walled, sound-insulated units with heat bridge.
- 60mm panel thickness,
- 110 kg/m3 A1 class rock wool.
- Aluminum Case with no heat bridge

Fan

- EC
- Plug
- Double Suction
- Axial Fan

Filter

- G2 G4 Panel
- M5 F7 Bag

Cooling

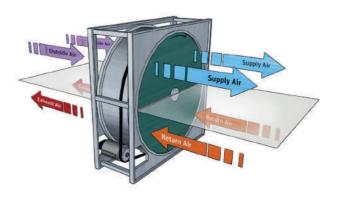
- Compressor
- Oil Separator
- Filter
- Four-Way Valve
- Expansion Valve
- Solenoid Valve
- Sight Glass
- Compensator

3 - - -

Standard Accessories

- Emergency Stop
- Air Damper
- Negative Pressure Trap
- Drift Eliminator
- Door Switch
- Roof Sheet

Components



Refer to the Air Handling Unit section "components" (page 18-23) for further information regarding Rooftop Packaged Air Handling Unit components.

Components

- Condenser component in the circuit under summer conditions.
- Evaporator component in the circuit under winter conditions.
- Anodized or treated with hydrophilic coating as an option.

Compressor

- High-efficiency scroll compressor
- R407 C coolant usage as standard
- R134A, R410A coolant usage as an option

Thermostatic Expansion Valve

- Reduces the pressure of the high-pressure coolant in liquid form that arrives from the condenser down to the evaporator pressure.
- Expansion valve is a cooling control equipment that starts, stops and modulates the flow of the coolant according to the load requirements of the cooling system.
- Used as standard.

Electronic Expansion Valve

- Plays an important role for the evaporator to receive the sufficient amount
 of coolant in variable flow Capacity systems (VRF/VRV); where the flow
 Capacity of the coolant is constantly changing.
- Electronic expansion valves opeCapacity more efficiently as compared to thermostatic expansion valves.
- Used optionally.

Four-Way Valve

- Ensures that the Heat-Pump coolant system provides heating and cooling.
- Performs hot gas by-pass in case of defrost.
- Directs the fluid to the evaporator or to the condenser according to the operating conditions.

Electrical Automation

Checkpoints

Analog Inputs

- Temperature sensor
- · Humidity sensor
- Pressure sensor types
- Frost protection temperature sensor

Alarms

- · Motor thermal failure
- Belt broken
- Filter contamination
- Frost
- Compressor thermal failure
- Rotary motor
- Low pressure
- · High pressure
- Electric heater failure

Checkpoints

- Return air
- Fresh Air
- · Room thermostat
- Touch panel
- ModBus (RS485)
- BACnet

Analog Outputs

- Valve motor
- Motor frequency (0 10V)
- Damper motor
- Electronic Expansion Valve



Other Points

- Time programming
- Automatic mode change
- Feed water temperature
- · Free cooling

Digital Inputs

- Differential pressure switch
- Condenser High pressure
- Compressor High pressure
- Compressor Low pressure
- Frost thermostat

Digital Outputs

- Electric heater step
- Fan start stop
- Compressor start
- Four-Way Valve
- Valve motor

Safety Points

- Emergency Stop
- · Safety thermostat
- High gas pressure
- Low gas pressure
- Condensation pressure
- Motor protection
- Frost thermostat
- Temperature thermostat
- Door Switch

Brands of electrical automation equipment may differ from the project and specifications. See pages 24 - 27 for the electrical automation process.

Ceiling Type Heat Recovery Units content

Why Viaclimate?
Products Overview
Selection Chart
Optional Heaters
General Features
Components
Electrical Automation

83 - 94

After Sales Service

Quick

Easy Installation

High Energ

Smart Control

Air Circulation

Electric Heating

Wired Controller

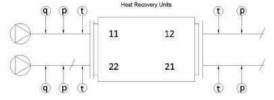
Heat-Pump

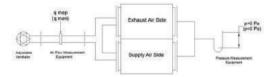
Plug and Play

Compliance to Standards

Why ViaClimate?

High Energy Efficiency

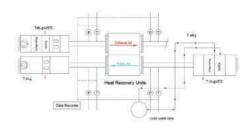

- Ensures high efficiency with the product structure and the variety of the components used thanks to optimal energy consumption.
- Ceiling type heat recovery unit production meets the objectives and requirements of ERP2018.
- · Heat recovery exchangers have min. 52% efficiency.



Flexible Areas of Use

- Educational institutions
- · Commercial areas
- Conference halls, theaters and movie theaters
- Accommodation areas
- .

Test 1: Pressure Reduction Capacity



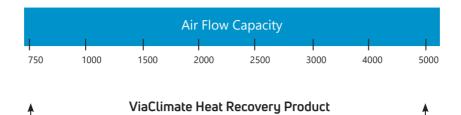
Test 2: External Leak

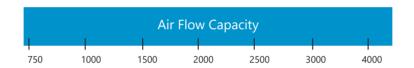
EN308 Tests

- Viaclimate Quality Management Department carries out EN308 tests at our factory in accordance with TSEK Criteria.
- In addition to EN308 tests, our Products also undergo grounding, continuity, coil insulation and voltage tests. (EN60204)

Test 4: Temperature and Humidity

Quality Standards


 The performance values of our Viaclimate ceiling type heat recovery units were measured during tests performed according to TSE Standards, and certified according to TSE criteria. (TSEK 381)



Products Overview

*AC or EC fan option

ViaClimate Dx Battery Heat Recovery Product

* AC or EC fan option

ViaClimate Heat-Pump Heat Recovery Product

* AC or EC fan option

Selection Chart

	d VIACLIMAT be Heat Reco		HRUBOX 1000	HRUBOX 2000	HRUBOX 3000	HRUBOX 4000	HRUBOX 5000
Air Flow Capacity		m³/h	1000	2000	3000	4000	5000
Exterior Static Pres	sure	Pa	80	200	210	150	120
Motor Power*	Motor Power*		0.15	0.45	0.55	0.75	1.27
Total Product Powe	Γ	kW	0.3	0.9	1.1	1.5	2.54
Product Power Inpu	t	V/Ph/Hz			220/1/50		
Noise Level**		dB	41	48	42	48	48
	Height		420	500	550	615	655
Dimensions	Width	mm	850	980	1080	1210	1400
	Length	mm	1000	1300	1550	1800	1800

^{*} Manufactured with an AC fan.

Electric heater is provided as an option.

Water heater is provided as an option.

Power input of electric heater models is 400 V.

	d VIACLIMAT be Heat Reco		HRUBOX EC 750	HRUBOX EC 1000	HRUBOX EC 1500	HRUBOX EC 2000	HRUBOX EC 2500	HRUBOX EC 3000	HRUBOX EC 4000	HRUBOX EC 5000
Air Flow Capacity		m³/h	750	1000	1500	2000	2500	3000	4000	5000
Exterior Static Press	sure	Pa	200	150	230	290	250	150	180	140
Motor Power *		kW	V 0.16 0.17 0.05 0.05 0.0				0.05	0.05	0.075	0.075
Total Product Power	Г	kW	0.33	0.34	0.1	0.1	0.1	0.1	0.15	0.15
Product Power Inpu	t	V/Ph/Hz		220/1/50				400/3/50		
Noise Level**		dB	40	40	40	48	49	42	48	50
	Height mm		390	395	435	435	535	535	615	655
Product External Numbersions	Width	mm	700	755	760	905	1105	1105	1210	1400
2	Length	mm	960	1110	1110	1410	1610	1705	1800	1800

^{*} Manufactured with an EC fan.

Electric heater is provided as an option.

Water heater is provided as an option.

Power input of electric heater models is 400 V.

^{**} Sound pressure at a distance of 3 meters from the Product, at a frequency of 250 Hz.

^{**} Sound pressure at a distance of 3 meters from the Product, at a frequency of 250 Hz.

Selection Chart

	1ATE Dx Batt pe Heat Reco		HRUBOX DX 1000	HRUBOX DX 2000	HRUBOX DX 3000	HRUBOX DX 4000
Air Flow Capacity		m³/h	1000	2000	3000	4000
Exterior Static Pressure***		Pa	80	140	150	120
Dx Capacity**		kW	6	12	18	24
Motor Power*		kW	0.375	0.45	0.55	1.27
Total Product Power	Г	kW	0.75	0.9	1.1	2.54
Product Power Inpu	t	V/Ph/Hz		220/	1/50	
	Height	mm	420	500	550	615
Product External Dimensions	Width	mm	850	980	1080	1210
	Length	mm	1300	1600	1850	2100

^{*} Manufactured with an AC fan.

A dry contact is provided as standard for integration with the VRF external unit.

Drift eliminator and condensate tray come as standard.

Electric heater is provided as an option.

Power input of electric heater models is 400 V.

	ATE Dx Batt De Heat Reco		HRUBOX EC DX 750	HRUBOX EC DX 1000	HRUBOX EC DX 1500	HRUBOX EC DX 2000	HRUBOX EC DX 2500	HRUBOX EC DX 3000	HRUBOX EC DX 4000
Air Flow Capacity	Air Flow Capacity m ³ /h		750	1000	1500	2000	2500	3000	4000
Exterior Static Press	sure***	Pa	130	90	160	225	180	75	110
Dx Capacity**		kW	4,5	6	9	12 15 18 24			
Motor Power*		kW	0.169	0.17	0.5	0.5	0.5	0.5	0.75
Total Product Power	Г	kW	0.338	0.34	1	1	1	1	1.5
Product Power Inpu	t	V/Ph/Hz		220/1/50		400/3/50			
	Height mm		390	395	435	435	535	535	615
Product External Dimensions	Width	mm	700	755	760	905	1105	1105	1210
2	Length	mm	1260	1410	1410	1710	1910	2005	2100

^{*} Manufactured with an EC fan.

Drift eliminator and condensate tray come as standard.

Electric heater is provided as an option.

Power input of electric heater models is 400 V.

^{**}Dx Battery is installed in the Product during production.

^{**}In calculating the Dx capacities, ambient return air 22 °C, dx battery input temperature 30 °C values were considered.

^{***}Exterior pressure losses were calculated by inclugin the dx battery pressure loss.

^{**}Dx Battery is installed in the Product during production.

^{**}In calculating the Dx capacities, ambient return air 22 °C, dx battery input temperature 30 °C values were considered.

^{***}Exterior pressure losses were calculated by inclugin the dx battery pressure loss.

 $[\]ensuremath{\mathsf{A}}\xspace$ dry contact is provided as standard for integration with the VRF external unit.

Selection Chart

	LIMATE Ceilir Pump Heat R	•	HRUBOX HP 1000	HRUBOX HP 2000	HRUBOX HP 3000	HRUBOX HP 4000
Air Flow Capa	city	m³/h	1000	2000	3000	4000
Exterior Static	Pressure	Pa(maks.)	80	140	150	50
Cooling Capac	ity*	kW	7,9	15,87	23,81	31,74
Heat-Pump Hea	ating Capacity**	kW	10,1	20	30,26	39,84
EER			2,68	3,16	3,16	2,99
СОР			3,43	3,98	4,01	3,75
Compressor P	ower	kW	2,2	4,13	6,45	8,1
Motor Power*	**	kW	0,75	0,9	1,1	2,54
Total Product	Power	kW	2,95	5,03	7,55	10,64
Product Powe	r Input	V/Ph/Hz		400/	3/50	
Product	Height	mm	420	500	550	615
Product External	Width	mm	1150	1280	1380	1510
Dimensions	Length	mm	1300	1600	1850	2100

	LIMATE Ceilin Pump Heat Re	J J.	HRUBOX EC HP 750	HRUBOX EC HP 1000	HRUBOX EC HP 1500	HRUBOX EC HP 2000	HRUBOX EC HP 2500	HRUBOX EC HP 3000	HRUBOX EC HP 4000
Air Flow Capa	city	m³/h	750	1000	1500	2000	2500	3000	4000
Exterior Statio	: Pressure	Pa	130	90	160	225	180	75	110
Cooling Capac	ity*	kW	6.07	7.9	11.9	15.87	20	23.81	31.74
Heat-Pump He	ating Capacity**	kW	7.89	10.1	14.6	20	24.5	30.26	39.84
EER	EER		2,81	3,11	3,20	3,09	3,64	3,20	3,31
COP			3,66	3,98	3,92	3,90	4,45	4,06	4,15
Compressor P	ower	kW	1,82	2,20	2,72	4,13	4,50	6,45	8,10
Motor Power*	**	kW	0,338	0,34	1	1	1	1	1,5
Total Product	Power	kW	2,16	2,54	3,72	5,13	5,50	7,45	9,60
Product Powe	r Input	V/Ph/Hz				400/3/50			
Product	Height	mm	390	395	435	435	535	535	600
External	Width	mm	1000	1055	1060	1205	1405	1405	1535
Dimensions	Length	mm	1260	1410	1410	1710	1910	2005	2155

 $^{^{\}star}$ In calculating the cooling capacity, the outdoor temperature 35 $^{\circ}\text{C}$ 40% RH values were taken as reference.

^{*}In calculating the cooling capacity, the outdoor temperature $35\,^{\circ}\text{C}$ 40% RH values were taken as reference.

^{**}In calculating the Heat-Pump heating capacity, the outdoor temperature 5 °C 75 % RH values were taken as reference.

^{***} Manufactured with an AC fan.

Heat recovery exchanger capacity is included in the calculation of Heating, Cooling, EER, COP values. Heat exchanger (electric, water) is recommended as an option for temperatures below $5\,^{\circ}$ C.

^{**} In calculating the Heat-Pump heating capacity, the outdoor temperature 5 °C 75 % RH values were taken as reference.

^{***} Manufactured with an EC fan.

Heat recovery exchanger capacity is included in the calculation of Heating, Cooling, EER, COP values. Heat exchanger (electric, water) is recommended as an option for temperatures below 5 °C.

Optional Heaters

	VIACLIMATE Electric Heate		HRUE 4	HRUE 6	HRUE 8	HRUE 10	HRUE 12	HRUE 14
Electric Heatin	Electric Heating Capacity kW		4	6	8	10	12	14
Electric Heate	r Step		1	1	1	1	2	2
Total Power	Total Power kW		4	6	8	10	12	14
Current		А	9	13	17	20	24	29
Fuse			3x10	3x16	3x20	3x25	3x32	3x40
Power Input		V/Ph/Hz			400/	/3/50		
	Height	mm	250	310	330	330	390	390
Heater Dimensions	Width	mm	270	340	370	370	440	440
	Length	mm	250	300	350	350	400	400

Duct Type Electric Heaters come standard with input fuse installations and contactor assigments completed.

Electric heater coils are manufactured using stainless steel sheets or epoxy-coating as standard.

The installation is packaged together with the heat recovery Product

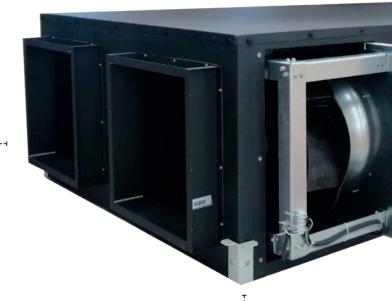
	VIACLIMATE Water Heater			HRUW 12	HRUW 16	HRUW 20	HRUW 28
Heating Capa	Heating Capacity kW			12	16	20	28
Water Side Pr	Water Side Pressure Loss Pa			24	22	28	30
Water Regime	Water Regime °C				80/60		
Water Heater Diameter	Connector	inç	3/4"	3/4"	3/4"	1"	1"
	Yükseklik	mm	250	310	330	390	390
lsıtıcı Ölçüleri	En	mm	270	340	370	440	440
O Lyono	Boy	mm	150	150	150	150	150

Comes embedded in the ceiling type heat recovery Product as standard. \\

Motor valve and Case installation is optional.

The control card has a valve motor output as standard.

Electric heater control is provided as an option



General Features

Standard Components

• HRU Standard Control Units

Case Structure

- Rigid design with Galvanized Sheet
- Easily cleaned interior
- Comes standard with electrostatic powder painted exterior surface.
- 10 mm NFAK acousting insulation

General Features

Optional Components

- Water Heater
- Water Cooler
- Electric Heater
- Gas-filled (DX)
- Water Heat Exchanger Control Valve and Motors
- F7 Filte
- HRU Plus Control Unit

Heat Recovery

- Cross current Aluminum Plated (Optional By-pass)
- Counter current Aluminum Plated
- Caseulosic Plated

Components

AC Fan

- Double-suction, high-performance and efficiency, self-motorized AC fans
- Capable of operating up to 500 Pa Differential-Pressure in total
- Silent operation
- 5-Step Speed Control

EC Fan

- Back sloping, high-performance and efficiency, self-motorized EC fans
- Capable of operating up to 500 Pa Differential-Pressure in total
- Silent operation
- Proportional control with a 0-10V signal.

Filter

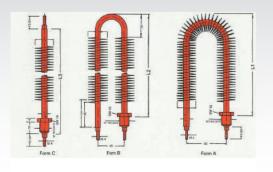
- G4 class filter according to EN 779 standard
- Optional F7 class bag filter

Aluminum Heat Recovery Exchanger

- Air-to-air heat recovery
- Min. 52% heat recovery efficiency
- High heat transfer, low pressure loss

HRU Standard Control Unit

- Manual and automatic fan speed control feature
- Heater control feature
- · Failure reporting
- Ambient temperature thermostat.


Optional Components

Water Cooler Heat Exchanger

- Components that ensure heat transfer from water to air with the movement of cold water running inside the coil.
- Designed for (6°C-10°C) , (7°C- 12°C) or other conditions according to water regime.
- Used with a drift eliminator as standard.
- Used with a double sloped insulated condensate tray made of stainless sheet as standard

Water Heater Heat Exchanger

- Components that ensure heat transfer from water to air with the movement of hot water running inside the coil.
- Designed for (90°C-70°C), (80°C-60°C), (70°C-50°C), (60°C-40°C) or other conditions according to water regime.

Gas Heat Exchanger (Dx)

- Used for air cooling and heating applications with condensing units (external unit).
- Design compatible with R410 coolant
- Used with a drift eliminator as standard.
- Used with a double sloped insulated condensate tray made of stainless sheet as standard.

Bypass Air Damper

- · Plate frost protection
- Free-cooling operation
- IntegCapacityd damper control motor

Electric Heater

- Heating equipment where the electrical energy is transmitted to air via heating coils.
- 380V and electric arcs with equal phase distributions come as standard.
- Manufactured according to the required capacity and number of steps.
- · Comes standard with a mechanical safety thermostat.

Electrical Automation

HRU Standard Control Unit

- » Manual and automatic fan speed control in AC motors
- » Capability of operating with an air quality sensor
- » Control and alarm for filter level
- » Heater control
- » Damper control
- » Operating with 7 different scenarios
- » Building automation or central computer connectivity with Modbus (RS485) connection
- » Product deactivation according to the information sent by the fire station
- » Failure reporting
- » Motor technical protection
- » Summer, winter ventilation position
- » Weekly scheduling
- » Temperature control via room control panel

Cooking Housing Variable(s) Shape of Eleveral House House Shape of Eleveral House House Shape and Shape Shap

U ON/OFF — On/Off Switch WODE — Operation Mode Selection Switch Fan → Fan Speed Selection Switch

Set Value Setting Switches

HRU Pro Control Unit

- » Manual and automatic fan speed control in EC and AC motors
- » Capability of operating with an air quality sensor
- » Control and alarm for filter level
- » Compressor input and control
- » Heating and cooling control in Heat-Pump Products with 4-way valve control output
- » Heat recovery Rotary control
- » Temperature sensor input and automatic heater activation option $% \left(1\right) =\left(1\right) \left(1\right) \left$
- » Preliminary heater control with outdoor air temperature sensor
- » Heater or valve control input
- » By-Pass damper control and exchanger frost protection $\,$
- » Operating with 13 different scenarios
- » Remote control with Modbus (RS485) connection
- » Product deactivation according to the information sent by the fire station
- » Failure reporting
- » Weekly scheduling
- » Temperature control via room control panel

Air Unit Heater content

Why Viaclimate? Selection Chart

95 - 98

After Sales

Quick

Easy

Air Circulation

Wired Controller

Why ViaClimate?

Areas of Use

- Factory
- Workshop
- Gym
- Storage
- Garage

Advantages

- Can be integCapacityd to the existing water heating sustem.
- Can be controlled individually with a room thermostat and a speed switch.
- Ensures air circulation.
- A practical solution that can be easily and quickly installed.

 Ind.

 Ind
- Air blow direction can be adjusted thanks to the mobile air discharge grill.
- Lower initial investment cost compared to central heating systems.

Air Unit Heater

Selection Chart

	VIACLIMA Air Unit Hea		Air Input Temperature	Air Output Temperature	Air Input Temperature	Air Output Temperature
			10°C	35°C	15°C	38°C
Operating Conditions	Model	Blowing Capacity m³/h		acity kcal/h		acity kcal/h
	VAHA-70	900		00		00
	VAHA-71 VAHA-72	950		00 50		00 00
	VAHA-72 VAHA-73	1250		00		00
	VAHA-74	1500		00	110	
90-70°C	VAHA-75	2000		.00		00
	VAHA-76	2500		200		50
	VAHA-77	3000		000	220	
	VAHA-78	4000		700		400
	VAHA-79	5000	284	28400 36		700
	VAHA-60	900	62	00	77	00
	VAHA-61	950	66	00	82	00
	VAHA-62	1000	69	00	86	00
	VAHA-63	1250	87	00	107	700
80-60°C	VAHA-64	1500	104	÷00	129	100
80-80 C	VAHA-65	2000	138	300	172	:00
	VAHA-66	2500	173	800	214	00
	VAHA-67	3000	207	700	257	700
	VAHA-68	4000	276	500	343	300
	VAHA-69	5000	345	500	428	300
					T	
	VAHA-50	900		00		00
	VAHA-51	950		00		00
	VAHA-52	1000		00		00
	VAHA-53	1250		200		700
70-50°C	VAHA-54	1500		200	129	
	VAHA-55	2000		700	172	
	VAHA-56 VAHA-57	2500 3000		300 400	257	100 700
	VAHA-58	4000		500	343	
	VAHA-59	5000		500		300 300
	V/ III/ 133		100		120	
	VAHA-40	900	84	.00	99	00
	VAHA-41	950		00		500
	VAHA-42	1000		00		00
	VAHA-43	1250		00		800
	VAHA-44	1500		000	165	
60-40°C	VAHA-45	2000		700		000
	VAHA-46	2500	234	400	275	500
	VAHA-47	3000	280	000	33000	
	VAHA-48	4000	37400		44000	
	VAHA-49	5000	467	700	550	000

^{*}Heating capacities according to the air input and output temperatures are as shown in the table. * VIACLIMATE Air Unit Heater code VRHA has an Axial Fan.

Air Unit Heater

Selection Chart

	VIACLIMA Air Unit He		Air Input Temperature	Air Output Temperature	Air Input Temperature	Air Output Temperatur
			10°C	35°C		38°C
Operating Conditions	Model	Blowing Capacity m³/h	Heating Cap	acity kcal/h	Heating Cap	acity kcal/h
	VRHA-70	900	5100		6600	
	VRHA-71	950	54	00	7000	
	Air Unit He	1000	56	50	74	00
	VRHA-73	1250	71	00	92	:00
90-70°C	VRHA-74	1500	85	00	110	000
	VRHA-75	2000	114	.00	147	700
	VRHA-76	2500	142	200	183	350
	VRHA-77	3000	170	000	220	000
	VRHA-78	4000	227	700	294	400
	VRHA-79	5000	284	400	367	700
	\/DIIA_CO	000		00	77	.00
80-60°C						
	Note Blowing Capacity m³/h Heating Capacity kaz/h Heating Capacity kaz/h					
			10°C 35°C 15°C Heating Capacity kcal/h 5100 6600 5400 7000 5650 7400 7100 9200 8500 11000 11400 14700 12200 22700 2940 28400 3670 6600 8200 6600 8200 6600 8200 6600 8200 6700 10700 1290 13800 1720 13800 1720 27600 3430 34500 4280 7700 8200 8200 7700 8200 8200 7700 8200 7700 8200 8200 8300 10200 10700 10200 10700 10200 10700 10200 10700 10200 10700 10200 10700 10700 10200 10700 10700 10200 10700 10700 10200 10700 10700 10200 10700 10700 10700 10200 10700 10			
	VRHA-69	5000	345	500	428	300
	VRHA-50	900	73	 NN	77	nn
70-50°C						
					-	
	VRHA-40	900	84	00	99	00
	VRHA-41	950	89	00	105	500
	VRHA-42	1000	94	00	110	000
	VRHA-43	1250	117	00	138	300
EU 40°C	VRHA-44	1500	140	000	165	500
0U-4U⁻L	VRHA-45	2000	187	700	220	000
	VRHA-46	2500	234	400	275	500
	VRHA-47	3000	280	000	330	000
80-60°C	VRHA-48	4000	374	400	44000	
	VRHA-49	5000	467	700		

^{*} Heating capacities according to the air input and output temperatures are as shown in the table. * VIACLIMATE Air Unit Heater code VRHA has a Radial Fan.

Shelter Ventilation System content

Why Viaclimate? General Features Selection Chart Electrical Automation

99-102

Air Circulation



Why ViaClimate?

Effective Filtration

- Under normal conditions, the shelter is provided with filtered fresh air, using a G4 filter, thanks to the By-Pass air damper which comes standard with the Shelter Fresh Air Handling Unit.
- In cases of potential danger; G4, Active Carbon Filter, Nuclear HEPA Filter will be used.
- The air is cleansed of all toxic gases and contaminating particles thanks to the lead separator and lead lining on interior panels, which can be purchased optionally.

Double Mode Operation

- The emergency and regular dampers of the Shelter Unit have spring-loaded return mechanism and ON/OFF control.
- The relevant damper position is opened according to the operating mode of the Product (regular time, danger conditions).
- Viaclimate electrical automation department provides double mode operation control services.

Protection from Nuclear Attacks

- · Viaclimate shelter units utilize nuclear-type filters.
- Specially designed by Viaclimate engineers to protect you from the sudden (light, heat, pressure, initial radiation) and residual fallout effects of nuclear weapons and weapons of chemical and biological warfare.

Shelter Ventilation System

General Features

Case Structure

- Unit type according to EN1886 standards
- Two different designs according to air flow Capacity
- 60mm double-walled panels
- 90 kg/m3 A1 class rock wool
- By-Pass aluminum air damper

Radioactive Hepa Filter

- H13 class, resistant against high temperatures
- Filters out even radioactive materials thanks to its superior filtration capabilities
- Galvanized sheet Case

Moving Mechanism

- Back sloping, high-performance, V-belt drive fan
- AC motor of IE2 or IE3 energy class

Lead Separator

- Reduces the effects of harmful X rays, IP20 or IP21 protection class
- Lead separator panels

G4 Filter

- G4 class according to EN 779 standard
- SepaCapacitys coarse and finer particles
- Galvanized sheet Case

Active Carbon Filter

- Molecular filtration according to EN 779 standard
- Holds foul odors and toxic gases
- Galvanized sheet Case

Shelter Ventilation System

Selection Chart

,	VIACLIMATE		ı	Duct Type *	*		Hand	Iling Unit Ty	pe ***	
	Shelter Unit		SSV 400	SSV 850	SSV 1700	SSV 3400	SSV 5100	SSV 6800	SSV 7650	SSV 10200
Air Flow Capa	acity	m³/h	400	850	1700	3400	5100	6800	7650	10200
Exterior Stati	c Pres-sure	Pa	350	350	400	400	350	350	350	350
Roughing - Active Carbon - Radioacti-ve Filter		mm	305x305	305x305	305x610	610x610	610x915	610x1220	915x915	915x1220
Lead Separat	or*	mm	305x305	305x305	305x610	610x610	610x915	610x1220	915x915	915x1220
Total Product	Power	kW	0,37	0,75	1,5	3	4	5,5	5,5	7,5
Product Power	er Input	V/Ph/Hz				400 /	3/50			
	Height	mm	550	550	550	832	832	832	1138	1138
Product Dimensions	Width	mm	550	600	650	732	1038	1344	1038	1344
	Length	mm	800	850	900	2500	2610	2610	2760	2950

^{*} Lead separator comes as optional.

Lead plating on the interior surfaces of the Products is optional in Shelter Units.

Electrical Automation

Viaclimate Shelter Ventilation Unit Electrical Automation control features

- » MCC and DDC panel design from a single control point
- » Double mode operation
- » Air flow Capacity adjustment with frequency inverter
- » Filter contamination warnings
- » Capability of operating in conjunction with an air quality sensor
- » Modbus (RS485) communication protocol
- » Operation time scheduling

^{**} Duct type shelter units are self motorized and have directly coupled fans.

 $[\]ensuremath{^{\star\star\star}}$ Handling Unit type shelter units have double-suction, thin-bladed fans.

Exhausted Unit and Ventilator

content

Why Viaclimate? Products Overview Selection Chart General Features Electrical Automation

103 - 108

After Sales

Quick

Easy

Air Circulation

Wired Controller

Why ViaClimate?

High Energy Efficiency

- Viaclimate Exhausted Units are manufactured using AC or EC motors of IE3 or higher classes, as per the ERP 2018 regulations.
- V-belt drive fans, plug fans or EC motor fans used in our Products ensure high energy efficiency.
- Has a modern Case, structure and static, dynamic balance settings in order to secure high efficiency and energy savings.

Ventilation

- Used for the purpose of meeting the fresh air demands, ensuring air circulation and maintaining the correct ambient pressure in ventilation and air conditioning systems.
- Optional filter groups filter out the air sent indoors by the fresh air line and meet fresh air requirements.

Flexible Areas of Use

- Areas of use: offices, cafeterias, markets, restaurants, meeting rooms, shopping malls, banks, hospitals, kitchens, industrial facilities etc.
- Wet areas.

Quality Standards

Featuring low or high suction and blowing capacities in order
to clean the environmental air in locations that do not require
heating and cooling, according to the physiological features of the
environmental air to be used, our Products are manufactured at a
high quality level.

Products Overview

Air flow Capacity chart is intended for visual and informative purposes.

Exhausted Units and Ventilators

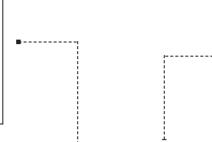
Selection Chart

	VIACLIMATE Caseular Fans			AIRBOX AC 40	AIRBOX AC 60	AIRBOX AC 80	AIRBOX AC 100	AIRBOX AC 120	AIRBOX AC 150	AIRBOX AC 180	AIRBOX AC 200
Air Flow Capa	city	m³/h	2500	4000	6000	8000	10000	12000	15000	18000	20000
Exterior Station	Pressure	Pa	300	300	350	500	350	750	500	350	350
Fan Type	Fan Type Thick/Thin		7-7/225R	9-9/250R	12-9/280R	12-12/315R	15-15/355R	15-15/400R	18-18/450R	500R/500R	500R/500R
Total Product	Total Product Power kW		0,75	1,1	2,2	2,2	3	4	5,5	5,5	7,5
Product Power	Product Power Input V/Ph/Hz						400/3/50)			
Product	Height	mm	832	832	985	1138	1291	1444	1444	1597	1750
External Dimensions	Width	mm	732	732	885	1038	1191	1344	1344	1497	1650
	Length	mm	910	910	1060	1060	1210	1210	1360	1510	1510

	VIACLIMATE EC Caseular Fans			AIRBOX EC 40	AIRBOX EC 60	AIRBOX EC 80	AIRBOX EC 100	AIRBOX EC 120	AIRBOX EC 150	AIRBOX EC 180	
Air Flow Capa	city	m³/h	2500	4000	6000	8000	10000	12000	15000	18000	
Exterior Station	Pressure	Pa	300	500	450	500	350	750	500	350	
Fan Type	Fan Type		Ø250	Ø310	Ø355	Ø400	Ø400	Ø450	Ø500	Ø560	
Total Product	Total Product Power kW		0,5	1,23	1,9	2,5	3,35	5,25	5,7	5	
Product Powe	Product Power Input V/Ph/Hz		220/1/50		400/3/50						
Product	Height	mm	832	985	985	1138	1291	1444	1444	1597	
External Dimensions	Width	mm	732	885	885	1038	1191	1344	1344	1497	
	Length	mm	732	885	885	1038	1191	1344	1344	1497	

VIACLIMATE Duct Type Fans			VKY 190	VKY 225	VKY 250	VKY 280	VKY 355	VKY 400	VKY 450L	VKY 450H
Air Flow Capa	city	m³/h	395	865	1250	1440	1740	3315	4725	6000
Exterior Statio	Pressure	Pa	100	100	100	100	100	100	100	100
Total Product	Total Product Power W		60	135	230	230	210	430	800	1100
Product Powe	Product Power Input V/Ph/Hz		220/1/50							400/3/50
Product	Height	mm	150	200	200	250	350	400	500	500
External Dimensions	Width	mm	300	400	400	500	600	700	800	850
	Length	mm	400	400	400	600	700	800	900	900

VIACLIMATE Roof Type Fans			VCY 190	VCY 225	VCY 250	VCY 280	VCY 355	VCY 400	VCY 450L	VCY 450H
Air Flow Capacity m ³ /h		m³/h	405	870	1280	1510	1780	3340	4760	6040
Exterior Static Pressure		Pa	100	100	100	100	100	100	100	100
Total Product Power W		W	60	135	230	230	210	430	800	1100
Product Power Input V/Ph/Hz		V/Ph/Hz				220/1/50				400/3/50
Product	Height	mm	300	300	300	380	380	450	480	480
External Dimensions	Width	mm	300	300	350	350	450	600	700	700
	Length	mm	300	300	350	350	450	600	700	700


The exterior static pressure losses of the Exhausted Unit designs carried out according to air flow Capacitys are at the maximum level.

Exhausted Units and Ventilators

General Features

Case Structure

- Designed according to EN1886 standards.
- Double-walled, sound-insulated units. 60mm panel thickness,
- 90 kg/m3 A1 class rock wool.
- Aluminum profile Case with heat bridge.
- Straight case design

Fan

- EC
- Plug
- EC Radial
- Double Inlet
- Double Inlet (Back Sloping)
- Ex-proof

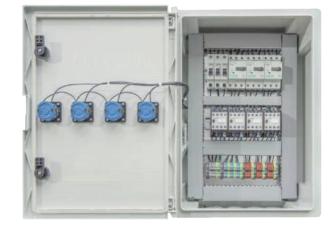
Filter

- G2 G4 Panel
- M5 F9 Bag
- Panel Carbon

Optional Accessories

- Air Damper
- Thermal Pacco Switch
- Emergency Stop
- Internal Lighting
- Door Switch
- Roof SheetHood
- MCC Control Panel
- ...

Electrical Automation


MCC Panel Control

- Fixed frequency (Star)
- Fixed frequency (Delta)
- Fixed frequency (Star-Delta)
- Variable frequency (With frequency inverter)
- Pacco switch
- Warning lights

DDC Panel Control

- Differential pressure switch
- Fark-Pressure sensor
- Air quality sensor
- Damper motor
- Frequency inverter
- Emergency Stop

Brands of electrical automation equipment may differ from the project and specifications. See pages 24 - 27 for the electrical automation process.

Technical Service Tracking Chart

TECI	HNICAL SER\	/ICE TRACKING	CHART	
	3-MONTH	4-MONTH	6-MONTH	ANNUAL
Air Handling Unit		4		
Hygienic Air Handling Unit	*			
Pool Dehumidification Unit	*	_		
Heat-Pump Air Handling Unit	*			
Rooftop Packaged Air Handling Unit	*			
Kitchen Exhaust and Air Hand-ling Unit	1			
Ceiling Type Heat Recovery Units			4	
Exhausted Unit / Ventilator	400			1
Shelter Ventilation System	/5_			1
Air Unit Heater	1 - 2			4

Periodic maintenance will be performed on the products commissioned by VIACLIMATE Technical Service Personnel in order to ensure continuous system efficiency and to prevent any loss of performance in the long term.

3-MONTH	Periodic maintenance that encompasses Hygienic Air Handling Units, Pool Dehumidification Units, Packaged Heat-Pump Air Handling Units, Rooftop Packaged Air Handling Units, Kitchen Exhaust and Air Handling Units. Includes the general inspection of the operational mecha-nisms of the product; Filter cleaning and, if necessary, replacement; Inspection of power supplies.
4-MONTH	Periodic maintenance that encompasses Air Handling Units. Includes the inspection of operational mechanisms that vary according to the moving parts; inspection and, if necessary, the replacement of belt-and-pulley mechanisms; inspection and, if necessary, replacement of air filters; inspection of power supplies.
6-MONTH	Maintenance that encompasses Ceiling Type Heat Recovery Units. Includes the inspection of exchangers; Filter cleaning and, if necessary, replacement; inspection of moving parts and power supplies.
ANNUAL	Maintenance that encompasses the Exhausted Unit / Ventilator, Shelter Ventilation System, Air Unit Heaters. Includes the general inspection of the products; inspection and, if necessary, replacement of moving parts; Filter cleaning and, if necessary, replacement.

^{*}The content of the periodic maintenance procedures to be carried out by VIACLIMATE technical personnel may vary depending on the product

^{**}Since the products that have not been commissioned by VIACLIMATE technical personnel or products for which periodic maintenance procedures have been omitted will not be covered within the scope of product warranty, we as VIACLIMATE recommend that the periodic maintenance of the products is performed in a timely manner.

- In performing their service duties, VIACLIMATE Technical Service Teams aim
 to look out for the safety of the customer, ensure customer satisfaction and
 continuously expand our service network with our references.
- With our services, we ensure that our Products have longer and more efficient service lives by selecting all spare parts in accordance with the standards.

Your Notes

Your Notes

KERİMLER KLİMA A.Ş.

Factory

Anadolu Organized Industrial Zone 5. Cadde No: 4 Sincan / ANKARA - TURKEY

info@viaclimate.com www.viaclimate.com

Phone: +90 312 395 43 18 **Fax:** +90 312 395 43 19

